A ball bearing is to be used on a shaft whose rotational speed is 60 revolutions-per-second and is to support a 600 pound radial load and a 400 pound thrust load. The bearing is to have a life of 5000 hours at a reliability of 99.9% and to fit on a shaft whose diameter is to be not less than 2.00 inch. Select the most economical radial ball bearing for this application using the Timken data.
\[\omega = 60 \text{ rev/sec} \]
\[= 3600 \text{ rev/min} \]

\[F_t = 400 \]
\[F_r = 600 \]

\[L = 5000 \text{ hours} \]
\[K_r = 0.21 \ (99.9\%) \]
\[K_a = 1.0 \]

\[C_{ref} = K_a F_e \left(\frac{L}{K_r L_r} \right)^{0.3} \]

\[F_e \ (F_r = 0.67) \]
\[F_e = (600 \text{ lb})(4.45 \frac{N}{lb}) \left[1 + 1.115 (0.67 - 0.35) \right] \]

\[F_e = \sqrt{3622 \text{ N}} \]
\[= 36 \text{ kN} \]

\[L = (5000 \text{ hr})(60 \frac{\text{ min}}{\text{ hr}})(3600 \frac{\text{ Rev}}{\text{ min}}) \]
\[L = 1080 \times 10^6 \text{ cycles} \]

\[C_{Rea} = (1)(3.6) \left[\frac{1080}{214.90} \right]^{0.3} \]

\[C_{Rea} = 12.2 \text{ kN} \]

\[\Delta \rho_{min} = 2.00 \text{ in} \approx 51 \text{ mm} \]

\[\text{Use} \ 212 \]