Shigley 15
12-23
Page 528
P3 1 of 5 Q'=55 mm SAE 30 0.1 d = 50 mm T = SS°C w= Smm -Ps = 200 kPa C= 424-m W= IOKN 1=25 mm r= ZSMM Nd = 0.5

 $\Delta T_{c} = \frac{1956 (10)^{6} [(c)f] SW^{2}}{(1+1.5e^{2})} \frac{1}{P_{s} \Gamma^{4}}$ $\Gamma \sim mm$ $P_{s} \sim k P_{a}$ $W \sim k N$ $\Delta T_{c} \sim C^{\circ}$

We need Tavg; but, only have To
:- We need to assume an initial
Mor initial Tang.
Remember Tary = Tx+To
AT = Too-Tu
Tay=Ti+ AT
First "trial"
Assume U, = 5 x103 m.Pa. sec
AT, = 2(115-55)
(DT = 1200°) ~ Sirst trial
value
$S = \left(\frac{r}{c}\right)^2 \frac{uN}{P}$ each side
$P = \frac{(\frac{10,000}{2})}{(.05)(.025)} \frac{N}{m^2}$ Carries \(\frac{1}{2}\). \(\text{W}\)
$P = 4 \times 10^6 \frac{N}{m^2}$

S= 0.02 [e]= 0.9z 1T,c = 2900) (DT, a = 1200° error = 910° ~ too high Trial 7: $\Delta T_{z,a} = 300^{\circ}$ $Tavg,z = T_{L} + \Delta T_{z,a}/2$ $Tavg,z = 70 \circ c$ $uz = 1.6 \times 10^{-3}$ Sz = (595) = 48 / 1/06 Uz

Shigley 12-23, page 3

S/Z.Z3 Pg4015

<u> </u>	ΔTc = (1956×106) (100	
· .	= (2503_7)(2.6)(.6) [I+ 1.5]	5(.8 6) ²]
	$\Delta T_c = 721 C^{\circ}$ $\Delta T_z = 30 C^{\circ}$	1 120 30 90 2 30 223 -190
		3 70 81 -11 4 75 64 +6
		1
	Trial 3: DT3, a=700° Tax, a= 55+35 -	
	Tay,3= 55+35 - Tay,3= 90°c U3= 8-5×10=	>
	Tay, 3 = 55+35 -	(E) ₃ = 0.88

512,23 Pg5d5

0	$T_{col3} \Delta T_{a,o} = 75c^{\circ}$ $T_{col3} = 93^{\circ}c$ $c = 8x/o^{3}$	
	$S_{4} = 0.034$ $(= f_{4} = 1.75 (=) = 0.88$ $\Delta T_{4,c} = (2503.7) [1+(1.5)(.88)^{2}]$	
	Does this satisfy the criteria of mathematical error less than 3 degrees? If not, carry the problem through until it does.	
0		