
An Interactive Environment for Image Analysis
and Manipulation

Peter L. Stanchev

Institute of Mathematics, Bulgarian Academy of Sciences
Acad. G. Bonchev St. 8, 1113 Sofia, Bulgaria, e-mail: stanchev@bgearn.bitnet

 An interactive image analysis and manipulation environment is introduced
in the paper. The environment contains image manipulation functions, voxel
operations, neighbourhood and morphological filters. The most popular filters are
implemented and an easy interactive way for creating new filters is provided. The
environment can work with different types of 2D and 3D images. It can be used
as a system for image processing, for developing applications in the image
processing domain and as tools for image processing in an image database
system. The environment can be used by users with different expertise and
various levels of experience.

INTRODUCTION

 An interactive environment has always played an important role in image

processing, because of its visual nature. The immediate feedback interactive

systems reduce the developing time. The functionality of existing environment

ranges from a collection of library routines, via command and menu driven

systems to specialised programming languages.

 There are different image processing packages for IBM PC computers

such as Photo Paint of Corel Corporation and Photo Stiller of Aldus. There are

also specific image processing packages for the UNIX operating system such as

SCIL-Image [4] and ANALYZE [3]. The most popular application in this field for

MACKINTOSH is IMAGE. Applying the image environment leads to correcting

the distortion in the image and enhancing the image features.

 The proposed environment allows: 1) easy way of applying the most

commonly used image operations; 2) easy way for making new image

manipulation operations; 3) image processing functions in image database

systems [7]; 4) using great variety of 2D and 3D image types. In the paper only

functions realised in the first version of the environment are described.

METHODS

Peter Stanchev
International Journal on Information Theories & Applications, Vol 3, No 6, 1995 (18-25)

 Let us have a 3D image - I. It includes several 2D image slices which can

be binary - black and white (1 bit), grey scale (1 byte), grey scale (2 bytes),

index 256 colour (1 byte), true colour (3 bytes, a byte for every RGB colour)

images. The voxel value at a coordinate (x,y,z) can be treated as a value of an

intensity function f(x,y,z) and can be denoted as v(x,y,z).

 In this version, the following four classes of image operations are

considered in the image environment.

 The first class of image operations includes image manipulation

functions. The second class includes different voxel operations. The third

class contains a set of neighbourhood operations. And the last fourth class

includes a set of morphological operations.

 First Class - Image Manipulation Functions

 Functions such as: open, close, save an image, convert from one image

type to another, print an existing image, zoom, show the value in a clicked image

position, change a value in a clicked image position, extract a rectangular part

from an image in a new one, going from slice to slice in a 3D image are realised.

 Second Class - Voxel Operations

 A voxel operation by a function g is defined as:

 a) on each single voxel of an image I1 as:

 g: f1(x,y,z) ⇒ g o f1(x,y,z), for every (x,y,z) in I1;

 b) on each pair of corresponding voxels of two images I1 and I2 as:

 g: f1(x,y,z), f2(x,y,z) ⇒ g o f1(x,y,z), f2(x,y,z), for each (x,y,z) in I1,

and I2.

 An arithmetic operation is a voxel operation that combines two or more

images voxels by voxels. The realised in the image environment arithmetic

operations are:

 Addition: g(x,y,z) = f1(x,y,z)+f2(x,y,z);

 Subtraction: g(x,y,z) = f1(x,y,z)-f2(x,y,z);

 Multiplication: g(x,y,z) = f1(x,y,z)*f2(x,y,z);

 Division: g(x,y,z) = f1(x,y,z)/f2(x,y,z), for f2(x,y,z) ≠ 0;

 Boolean or: g(x,y,z) = f1(x,y,z)∨f2(x,y,z), for binary images;

 Boolean and: g(x,y,z) = f1(x,y,z)∧f2(x,y,z), for binary images.

 Image histogram: Histogram(w) presents a survey of the intensity values

in the image. Histogram w
f x y z w

N
()

#((, ,))
=

=
2

, for every (x,y,z) in I, where # is

the counting operator, N is the total number of voxels in the image and w is

between 0 and MI - the maximum intensity value in the image. For full colour

images three histograms are generated for every colour.

 Grey scale manipulation functions are also voxel operations. The

following functions have been built:

 Shift: g(x,y,z) = f1(x,y,z)+ constant;

 Multiplicative correction: g(x,y,z) = f1(x,y,z)* constant;

 Invert: g(x,y,z) = MI - f1(x,y,z);

 Threshold: f1(x,y,z) < threshold ⇒ g(x,y,z) = 0,

 f1(x,y,z) ≥ threshold ⇒ g(x,y,z) = 1,

where threshold is a constant called a threshold value.

 User defined pixel operations:

 a) specified by the user function over every voxel in an image;

 b) specified by the used function, between the voxels of two images.

 Third Class - Neighbourhood Operations

 The neighbourhood (mask), N(x,y,z) , of a voxel (x,y,z), is a set of a voxels

close to (x,y,z). The size and shape N(x,y,z) depend in general on the type of

operation, the characteristics of the image and the characteristics of the noise

[5].

 Neighbourhood operation is defined as a function that returns for every

voxel in the image a value, derived from the values of the voxels in the

neighbourhood of that voxel.

 In this environment, it is considered that the neighbourhood N(x,y,z) has

parallelogram shape and is symmetrical along the voxel. The dimensions of the

parallelogram (fx, fy, fz) are called window dimension. With dx, dy, dz we

denote the number of voxels from the central voxel to the border of the

parallelogram. So fx = 1 + 2.dx; fy = 1 + 2.dy; fz = 1 + 2.dz.

 Convolution sum is a special case of neighbourhood operation when the

output voxels are obtained as a sum of the multiplication of the mask elements

with the image voxels.

 A filter is defined as a low pass filter if: a) the mask elements are

positive and b) the sum of the mask coefficient equals 1. The low pass filter

does not affect frequency component in the image data and attenuates the high

frequency component. The low pass filter dampens the noise and smoothes the

image data.

 Let V
t

x y z v x i y j z k
i dx

dx

j dy

dy

k dz

dz
(, ,) (, ,)= + + +

=−=−=−
∑∑∑ and number = fx . fy. fz.

 Local low pass average filter. The output image has at voxel (x,y,z) the

value v low pass

v
t

x y z

number_

(, ,)
= . If we smooth with a local average filter, the

smooth depends on the size of neighbourhood. The larger the neighbourhood,

the more smoothing will be obtained in the output image.

 Unsharp Low Pass Mask filter. The output voxels are calculated as:

v unsharp x y z v x y z v low pass x y z(, ,) (, ,) _ (, ,)= − . This filter eliminates

homogeneous regions and highest edges and noise.

 Unsharp Low Pass Enhance Mask filter. The output voxels are

calculated as: v unsharp x y z v x y z v low pass x y z(, ,) (, ,) _ (, ,)= − . It has enhance

behaviour than the Unsharp Mask filter.

 A high-pass filter is defined if: a) the mask coefficient are positive or

negative and b) the sum of the mask elements is 0. It does not change the high

frequency components, attenuates the low frequency components, and

eliminates any bias in the image. The high-pass filter modifies the edge voxels

and is used as edge detection filters.

 Sobel filter. It is a classic edge detection filter. It can be defined

by separate kernels wx, wy, wz of each of x,y,z directions:

w i j k
i

j k
w i j k

j

j k
w i j k

k

j k
x y z

i i i
(, ,)

()
, (, ,)

()
, (, ,)

()
=

+ +
=

+ +
=

+ +2 2 2 2 2 2 2 2 2

and the total filter weight is defined as:

weight w i j k w i j k w i j kx
i dx

dx

j dy

dy

k dz

dz

y z= + +
=−=−=−
∑∑∑ | (, ,)| | (, ,)| | (, ,)|. The x-direction Sobel

filter is thus defined as:

S
x

x y z w i j k v x i y j z kx
i dx

dx

j dy

dy

k dz

dz
(, ,) (, ,) * (, ,)= + + +

=−=−=−
∑∑∑ . The y and z weights

are similarly computed. The final output of the Sobel filter is defined as:

v sobel x y z
S x x y z S y x y z S z x y z

weight
(, ,)

(, ,) (, ,) (, ,)
=

+ +2 2 2

.

 Sobel Enhance filter. It is defined as

v
Sobel enhance

x y z v x y z v
Sobel

x y z
_

(, ,) (, ,) (, ,).= +

 The Maximum Orthogonal Gradient filter is defined as:

v Gradient x y z G x x y z G x x y z G x x y z(, ,) max((, ,), (, ,), (, ,))= , where

G x x y z v x y z v x y z G y x y z v x y z v x y z

G z x y z v x y z v x y z

(, ,) | (, ,) (, ,)|, (, ,) | (, ,) (, ,)|,

(, ,) | (, ,) (, ,)|.

= + − − = + − −

= + − −

1 1 1 1

1 1

It is an edge detection filter which output resembles Sobel filter.

 The Sigma filter uses a local smoothing scheme. For each voxel in the

input volume the filter calculates the mean value of a set of voxels within

2*sigma value of the voxel of interest. Only voxels with a preliminary specified

neighbourhood are consider in the calculation. If too few points within the local

neighbourhood lie within the 2*sigma value, then the voxel of interest is left

unchanged, otherwise, the calculated mean values is assigned to the output

voxel. It smoothes noise, preserves edges, and can leave lines untouched.

 The masks in the case of 2D images with 3 by 3 pixel masks [2] for the

built in the system filters are given in Appendix 1. In the environment, the shape

of the mask can be changed by the user.

 User defined filters.

 The user can define new filters giving: 1) the shape of the neighbourhood:

2) the function defining the mask elements; 3) the mask elements values.

 Four Class - Morphological Filters

 Serra and Matheron have found the theory of mathematical morphology

[1]. The operations deletion, erosion, opening, closing, Hit-or-miss are defined in

the image environment. They are described in details in [8].

AN EXAMPLE

 Sobel filters applied over the CT phantom image in Fig. 1a produces the

image in Fig. 1b.

 (a) (b)

Fig. 1. Original image (a) and the image after applying a Sobel edge detection

filter (b).

CONCLUSIONS AND FUTURE WORK

 The proposed environment allows:

• working with 2D and 3D images of different types;

• studying the image filter behaviour;

• easy way of creating new image operations;

• applying a large set of image processing functions;

• the support of image processing functions in an image database

system;

• visual feedback by applying the environment functions.

 The environment has been implemented on IBM PC using Borland C++

under Windows 3.1. The design of the environment uses an experience gained

during the development of the AMSTERDAM image data base system [6],

working with electronic schema images. It will be part of the image database

system [7].

ACKNOWLEDGEMENT
 This project is partially supported by a project of the National Foundation
for Science Research of Bulgaria.

REFERENCES
1. Haralick R., Sternberg S., Zhuang X., “Image Analysis Using Mathematical

Morphology”, IEEE Transaction on Pattern Analysis and Machine Intelligence,
Vol. PAMI-9, No. 4, 532-50, July 1987.

2. Louis J., Gabliati J., “Machine Vision and Digital Image Processing
Fundamentals”, Prentice-Hall, 1990.

3. Robb R., Hanson D., “A Software System for Interactive and Quantitative
Visualisation of Multidimensional Biomedical Images”, Australian Physical and
Engineering Sciences in Medicine, 14(1):9-30, 1991.

4. SCIL-Image Manual, University of Amsterdam, 1991.
5. Smoulders A., “An Introduction to Image Processing and Computer Vision”,

University of Amsterdam, 1991.
6. Stanchev P., Smoulders A., Groan F., “An Approach to Image Indexing of

Documents”, Visual Database Systems”, E. Kenneth and L. Whiner, eds.,
North Holland, 63-77, 1992.

7. Stanchev P., “Morphological Filters in Image Processing Environment”, to be
published, 1995.

8. Stanchev P., “An Image Database with Power Image Retrieval by Image
Content”, to be published, 1995.

APPENDIX 1
 Let us have 2D images and the neighbourhood is given by a 3 by 3

matrix. In this case some of the common used filters can be defined by the

following matrices:

1. Low pass filter:
01 01 01
01 0 2 01
01 01 01

. . .

. . .

. . .












.

2. Laplacian edge enhancement high pass filters:
0 1 0
1 4 1

0 1 0

−
− −

−












,

1 2 1
2 4 2

1 2 1

−
− −

−












.

3. Gradient-directional filter:
1 1 1
1 2 1
1 1 1

−
− − −












,

1 1 1
1 2 1
1 1 1

− −
− −












,

−
− −
−













1 1 1
1 2 1
1 1 1

. The first is in

north, the second in north east, and the third in east direction.

4. Shift filter
0 0 0
1 1 0

0 0 0
−












,

0 1 0
0 1 0
0 0 0

−










,

0 0 1
0 1 0
0 0 0

−










. The first shifts the vertical

edges, the second the horizontal and the third the horizontal and vertical
edges.

5. Blurs filter:
0 0 0
1 1 1
0 0 0












,

0 1 0
0 1 0
0 1 0












,

1 0 0
0 1 0
0 0 1












. The first is for horizontal, the

second for vertical and the third for diagonal blurring.

6. Difference filters:
0 1 0
0 0 0
0 1 0−












,

0 0 0
1 0 1
0 0 0

−











. The first is for vertical and the

second for horizontal differences.

7. Horizontal difference and vertical smoothing:
1 0 1
1 0 1
1 0 1

−
−
−












.

8. Bright region expansion. Maximum of
1 1 1
1 1 1
1 1 1












.

9. Medium filter: the fifth largest of
1 1 1
1 1 1
1 1 1












.

10.Enhanced line segment:
− −
− −
− −













1 2 1
1 2 1
1 2 1

,
− − −

− − −













1 1 1
2 2 2
1 1 1

,
− −
− −

− −













1 1 2
1 2 1

2 1 1
. The first is

for vertical, the second for horizontal and the third for left-right diagonal line.

