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Abstract

In this paper wu use some ideas for analysis of reliability of technical systems to propose similar tools for
modeling and investigation of the problem of biological objects longevity, aging, and degradation. The main
characteristic for biological objects is their survival function. We focus on evaluation of this function. We
deal with the model of hierarchical structure, which is described in the framework of a multi-dimensional
Markov process with specific transition intensities.

1 Introduction and Motivation

In terms of reliability, most of the biological objects with sufficiently high organization are complex hierarchical
controllable systems. Even the lowest level living organisms possess tools for viability control, for defense and
treatment. The organism is a system consisting of several subsystems. Each subsystem can be divided into
subsystems of lower level etc. up to the smallest entities, which we will refer to as units. A failure of any
unit does not usually lead to immediate failure of the respective subsystem to which this unit belongs, neither
can this cause a failure of subsystems of higher level. Moreover, most units also do not fail immediately, but
usually pass through several stages of loss of their efficiency.

The neuron system play a role of controlling system, and for a living body, for instance, it possesses high
reliability. This means that biological objects can be treated as a complex hierarchical controllable fault
tolerance reliability systems [1] - [4].

In this paper we propose a general mathematical model for the description, evaluation and control of most
common reliability characteristics of complex hierarchical systems with multi-state fault tolerance units under
various repair policies. The main characteristic for biological objects is their survival function. Thus, in this
paper we focus on evaluation of this function. The model is described in the framework of a multi-dimensional
Markov process with specific transition intensity structure.

The specifics of any particular system is represented in the form of a special structure of mutually interacting
components and subsystems, with the sets of its normal functioning, dangerous and failure states, specified in
some transition graphs and/or a failure tree. Since these are individual characteristics for any concrete system,
we touch them in our model only indirectly. We merely assume that the user can determine the set of the
system states and detach its appropriate subsets of normal functioning, dangerous and failure states, and also
assign appropriate specifics for the system functioning. Moreover, because the main problem is the particular
model description with its parameters specialization we propose some general algorithm for construction of a
large scope of feasible models, and for supplying it with parameters needed for further analysis. Due to the
complexity of the problem, most of our solutions have an algorithmic form. These algorithms are included in
the computer tools mentioned above for the system modeling.

Our model also allows the use of linguistic data, the most common data processing in biological objects
description. Linguistic data are converted to fuzzy values, which are entered in the model. The model results
can also be converted back in linguistic form.

In the study we deal mainly with homogeneous in time models. In practice, the durability, aging, and
degradation studies one needs to model the failures and treatments intensities as a time dependent function.
An appropriate generalization of the model is possible, but its analysis requires specific information and a
wider use of deep numerical analysis and computer tools.

Some simple example illustrate our approach.
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2 A General Model

Consider a complex hierarchical multi-component system which is controlled and managed by a high reliable
system of control (SoC), as shown in Fig 1.
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Fig. 1. A complex multi-level hierarchical system.

In biology linguistic values are very often used. For instance “more or less enlarged” or “too much enlarged”
do not have an exact mapping the scale of real numbers. Rather we could map each linguistic value to a fuzzy
number. A fuzzy number is a number which is “around” a real number. A fuzzy number is represented by its
membership function h(x) defined with domain some real interval and range within [0, 1], located at the most
likely value of the variable it represents. Its maximum value is equal to 1. For example the value “suspected
not normal” for liver enlargement could mean that volume of the liver is between 85% and 130% of its normal
size, and that the value is most probably around 110%. Gathering opinion from several experts on what
is “suspected not normal” for liver enlargement means, we could calculate a fuzzy number corresponding to
“suspected not normal” and have a graphical representation of the linguistic concept. It is similar to the graph
of a uni-modal function h(x) defined over an interval which contains [85,130] with a maximum value equal to
1, located just above the point x0 = 110, and descending when x gets away from its most likely value 110.

In our work we convert linguistic values into fuzzy numbers (functions), work with them performing all the
specified operations, convert after that the result as new linguistic values and interpret it correspondingly.

Assume that the system is constructed from blocks and branches of several, L, levels. Each block with its
branches is followed by other blocks that may form a hierarchical subsystem of the same type as the main
one. The blocks of the last (lowest) level will be referred as units (elements) and may be subjected to gradual
(internal) failures of its own type. We will denote by L the maximal level of units. It is not necessary that any
unit belongs to this level. Different level units are possible. The reliability of each unit is partially controllable.

The failures in the systems of this type arise as a result of stress accumulation of the lowest level elements
which pass several stages before full failure. These faults lead to the efficiency of the system decreasing but do
not lead to the full failure of the system. The system of control (SoC) fixes these fault stages of elements and
gives a signal about the system ”state of health” decreasing.

Accordingly, to these signals, appropriate mechanisms of self-regulation are ”switched in”, and the system
is self regenerated if the process disturbing is not too deep. In the last case some outside acting is needed. It
is supposed that these action being applied at the time and in needed quality and quantity turn the system
after some time to the normal functioning state.

In another case the delay with maintenance of the system leads to the system degradation and as a result
it leads to the full failure of the system.

In order to specify the description of its behavior we introduce the vector index i = (i1, i2, . . . , iLi) which
determines each unit of the system as belonging to an appropriate chain of blocks at any level. Denote by I
the set of these indices (and appropriate units). Then the state space E of the system can be represented as a
set of vectors x = {xi : i ∈ I)}, where for any i ∈ I the integer xi represents the state of the i-th unit in sense
of its reliability. It can take different values, depending on its type, xi ∈ {0, 1, . . .mi}, where the exhausted
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level of i-th unit is denoted by mi. Notice that these numbers have no specific physical sense, but indicate
only a possible level of gradual failure of the i-th unit. The value of xi = mi means the full failure of i-th unit.
Denote also by N the set of all normal system states, D the set of defective states, and F the set of the full
system breakdown states. Moreover it is supposed that these subsets contain “boundary” sub-subsets ΓND,
ΓNF and ΓDF , such that the transition to the states in D and F is possible only from the states from these
subsets.

To model the system as functioning according to a finite state Markov process we assume that the times
of transition from one gradual level to another, as well as the times to repair a failed units have exponential
distributions. The respective parameters may depend on the type of the unit i ∈ I and also on the entire
system state x. These assumptions allow us to model the reliability of such a system by a multi-dimensional
Markov process

X = {Xi(t) : i ∈ I, t ≥ 0},
with set of states E , which should be precise for any specific system.

Additional assumption concerns the structure of transition intensities of such a process. The specifics of
the reliability models make it reasonable to suppose that the process can jump only to neighboring states (in
the case that gradual failure arises), and some function f determines the states to which the process goes in
the case of a completed treatment. The treatment function f can be given in different ways. The cases, where
as a treatment resulted in which the whole system is renovated, and only a unit is renovated were considered
in [3], [4]. Other treatment policies are also possible. For example, some subsystem of a given level could be
renovated as a treatment result.

This means that the transition intensities have the following form

a(x,y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αi(x) for y = x + ei, x,y ∈ N ,
λi(x) for y = x + ei, x ∈ ΓN ,y ∈ D,
βi(x) for y = x + ei, x,y ∈ D,
µi(x) for y = f(x), x ∈ D,
γi(x) for y = x + ei, x ∈ ΓN ,y ∈ F ,
νi(x) for y = x + ei, x ∈ ΓN ,y ∈ F .

(1)

Here and later notation ek means a unit vector with 1 at the k-th position and zeros elsewhere, while α(x),
β(x), γ(x), λ(x), µ(x) and ν(x) denote the sums of appropriate intensities over all admissible in the state x
indices.

The graph of transition with appropriate intensities for typical states is shown in Fig. 2.
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Fig. 2. Transition graph the Model.

3 A General Model Investigation

The Kolmogorov’s system of differential equations for the time dependent probabilities of the process with
transition intensities (1) and transition graph given in Fig. 2 has the form

dπ(0; t)
dt

= −λ(0)π(0; t) +
∑
i∈I

µi(ei)π(ei; t) +
∑

y∈f−1(0)⊂D
µ(y)π(y; t),

dπ(x; t)
dt

= −(α(x) + λ(x) + γ(x))π(x; t) +
∑

x−ei∈N :xi �=0

αi(x − ei)π(x − ei; t) +

+
∑

y∈f−1(x)⊂D

∑
y∈D

µi(y)π(y; t), x ∈ N
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dπ(x; t)
dt

= −(β(x) + µ(x) + ν(x))π(x; t) +
∑

x−ei∈ΓND:xi �=0

λi(x − ei)π(x − ei; t) +

+
∑

x−ei∈D:xi �=0

βi(x − ei)π(x − ei; t), x ∈ D,

dπ(x; t)
dt

=
∑

x−ei∈ΓNF

γ(x− ei)π(x − ei; t) +
∑

x−ei∈ΓDF

ν(x − ei)π(x − ei; t), x ∈ F . (2)

The system solution can be represented in terms of the Laplace transforms (LT)

π̃(x; s) =
∫ ∞

0

e−stπ(x; t)dt.

These functions make it possible to calculate the moments of the failure time, and perform its asymptotic
analysis for the large t. Passing into the system (11) to the Laplace transform with the initial condition
π(0; 0) = 1 one finds that

(s + λ(0))π̃(0; s) − 1 =
∑
i∈I

µi(ei)π̃(ei; s) +
∑

y∈f−1(0)⊂D
µ(y)π̃(y; s),

(s + α(x) + λ(x) + γ(x))π̃(x; s) =
∑

x−ei∈N :xi �=0

αi(x − ei)π̃(x − ei; s) +

+
∑

y∈f−1(x)⊂D

∑
y∈D

µi(y)π̃(y; s), x ∈ N

(s + β(x) + µ(x) + ν(x))π̃(x; s) =
∑

x−ei∈ΓND :xi �=0

λi(x − ei)π̃(x − ei; s) +

+
∑

x−ei∈D:xi �=0

βi(x − ei)π̃(x − ei; s), x ∈ D,

sπ̃(x; s) =
∑

x−ei∈ΓNF

γ(x − ei)π̃(x − ei; t) +

+
∑

x−ei∈ΓDF

ν(x − ei)π̃(x − ei; t), x ∈ F . (3)

For two special cases when the ”treatment” of the system leads to the full system renovation and for the
renovation only one unit the closed form and algorithmic solutions of this system have been done in [2] and
[3]. In the general case the solution could be find by the numerical methods.

Instead of this we focus on the asymptotic behavior of the system survival function. Taking into account
that the transition intensities inside subsets N , D and F have the same order and the transition intensities
between these subsets have much smaller order we use V. Korolyuk’s method of asymptotic enlarging of the
system states (see [5]) to reduce the model to a simple model, where all normal, dangerous and failure states
are brought together. Such a model is represented in the next section.

4 An Enlarge State Model

Consider the system after appropriate states of a general model enlarging. An appropriate process can pass
through only three states: the normal functioning state N , the dangerous (pre-failure) state D and the failure
state F . In spite of the simplicity of the model, remarkable results are obtained concerning the degradation
and aging of the system. The marked transition graph for the process is shown in Fig. 3. The transition
intensities are also included in the figure.
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Fig. 3. Transition graph for Enlarge State Model.
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According to this transition graph the Kolmogorov’s system of differential equations for time-dependent
state probabilities has the form

dπN (t)
dt

= −(λ + γ)πN (t) + µπD(t),

dπD(t)
dt

= −(µ + ν)πD(t) + λπN (t),

dπF (t)
dt

= γπN (t) + νπD(t). (4)

The survival (reliability) function for the system is given by

S(t) = 1 − πF (t) = 1 −
∫ t

0

[γπN (u) + νπD(u)] du, (5)

where the functions πN (t) and πD(t) are the solution of the first two equations of system (4). We find this
solution in terms of their Laplace transforms π̃N (s) and π̃D(s). Appropriate algebraic system in terms of the
LS-transforms for two first equations of the system (4) with the initial condition πN (0) = 1 takes the form

(s + λ + γ)π̃N (s) − µπ̃D(s) = 1,

−λπ̃N (s) + (s + µ + ν)π̃D(s) = 0. (6)

Its solution can be represented in the terms of roots of the characteristic equation

∆ = s2 + (λ + µ + ν + γ)s + λ ν + γ (µ + ν) = 0.

To simplify this equation and its roots we use the substitution

p = λ + µ + ν + γ, q = λ ν + γ (µ + ν).

With this notation the characteristic equation takes the form

∆ = s2 + ps + q = 0.

Its roots s1 and s2 (it is assumed that s2 < s1 < 0) are given by the formulae

s1,2 = −p

2

(
1 ∓

√
1 − 4q

p2

)
. (7)

Omitting some simple algebra we give the solution of the system (6) for LS-transforms

π̃N (s) =
1

s1 − s2

(
µ + ν + s1

s − s1
− µ + ν + s2

s − s2

)
,

π̃D(s) =
λ

s1 − s2

(
1

s − s1
− 1

s − s2

)
.

Using inverse transforms one can find

πN (t) =
µ + ν + s1

s1 − s2
es1t − µ + ν + s2

s1 − s2
es2t,

πD(t) =
λ

s1 − s2

(
es1t − es2t

)
. (8)

Thus, for the survival function (5) after integration of the last of equations (4) and some transformations we
get

S(t) = 1 − πF (t) =
q + γ s2

(s1 − s2) s2
es2t − q + γ s1

(s1 − s2) s1
es1t

= es1t

(
1 − γ + s1

s1 − s2

(
1 − es2−s1

))
(9)

To explain the longevity, aging and degradation problem let us consider the asymptotic behavior of this
function under the condition

q

p2
= ε, as ε → 0.
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From the relation (7) one can find
s1 ≈ −pε, s2 ≈ −p(1 − ε).

Therefore for the survival function (9) we have

S(t) = e−pεt

(
1 − γ − pε

p(1 − 2ε)

(
1 − e−p (1−2εt

))
(10)

The last expression shows that the survival function and therefore mean life time mainly depend on ratio
ε = q/p2 and increase with this ratio decreasing.

To investigate the survival function in more details depending on different parameters behavior we assume
that the intensity of “instantaneous” failure is smaller concerning with the intensity of “gradual” failure, while
the latter is much more smaller then the treatment rate in the dangerous state, and this one is comparable
with (has the same order as) transition intensity from dangerous to failure state, i.e. we put

µ >> λ >> γ, ν ≈ µ.

Dividing all the parameters over µ and scaling time in such a way that µ = 1, we put

µ = 1, λ = ε, γ = σε, ν = c.

For these parameters one can evaluate that

q

p2
≈ c + σ(1 + c)

(1 + c)2
ε − 2

(c + σ(1 + c))(1 + σ)
(1 + c)3

ε2,

and therefore the above approximation could be applied with appropriate coefficients.

5 Examples

As an Example we consider a simple general model with transition graph as on fig. 2 with 5 states in each set
N , D, and F . A birth and death process runs inside states N and D and transition intensities have different
order. We use double indexation in the subscripts πi,j for immediate understanding. Moreover, i = 0 for all
states in N , i = 1 for all states in D, and i = 2 for all states in the absorbing set F , and j = 1, 2, 3, 4, 5. The
system of differential equations for the state probabilities is as follow:

dπ0,1(t)
dt

= −(α1,2 + γ1 + λ1)π0,1(t) + α2,1π0,2(t) + µ1π1,1(t),

dπ0,j(t)
dt

= −(αj,j−1 + αj,j+1 + γj + λj)π0,j(t) + αj−1,jπ0,j−1(t) + αj+1,jπ0,j+1 + µjπ1,j(t), j = 2, 3, 4

dπ0,5(t)
dt

= −(α5,4 + γ5 + λ5)π0,5(t) + α4,5π0,4(t) + µ5π1,5(t),

dπ1,1(t)
dt

= −(β1,2 + ν1 + µ1)π1,1(t) + β2,1π1,2(t) + λ1π0,1(t),

dπ1,j(t)
dt

= −(βj,j−1 + βj,j+1 + νj + µj)π1,j(t) + βj−1,jπ1,j−1(t) + βj+1,jπ1,j+1 + λjπ0,j(t), j = 2, 3, 4

dπ1,5(t)
dt

= −(β5,4 + ν5 + µ5)π1,5(t) + β4,5π1,4(t) + λ5π0,5(t),

dπ2,j(t)
dt

= γjπ0,j(t) + νjπ1,j(t), j = 1, 2, 3, 4, 5. (11)

We use MATLAB to solve the system. The survival function is calculated as

S1(x) =
5∑

j=1

[π0,j(t) + π1,j(t)] (12)

The numerical values given to the parameters are chosen as here. The αi,j ’s are about 10 times µj ’s, about
100 times λi’s, and about 1000 times γj ’s. We keep the proportions βi,j = .9αi,j , and νj = .3µj , and no big
deviations from state to state. Hence, the parameters for our example are:

α1,2 = 10; β1,2 = 9, µ1 = 1, λ1 = 0.1, γ1 = 0.01, and ν1 = .3;
αj,j−1 = 9.5; βj,j−1 = 8.55, αj,j+1 = 10.5; βj,j+1 = 9.45,

µj = .95, λj = 0.095, γj = 0.0095, and νj = .28, j = 2, 3, 4;
α5,4 = 10.5; β5,4 = 9.45, µ5 = 1.05, λ5 = 0.105, γ5 = 0.00105, and ν5 = .32;
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The survival function of the above system is compared to the survival function (??) of the aggregated model
described in Section 4. We chose as numerical values the average (arithmetic mean) of the intensities outgoing
from each state set. Thus, we have

λ =
1
5
(λ1 + λ2 + λ3 + λ4 + λ5) = .098; µ = .98, γ = .0098, ν = .2812,

Substitute it in (??) and obtain
S2(x) =

To compare the results for general model with analogous for the Enlarge State model we also consider the
calculation of the survival function S(t) accordingly to exact formulae (9) and approximate formulae (10) for
the following value of parameters

µ = 1, ν = 0.5 λ = 0.1, γ = 0.01.

For these values of parameters the exact formulae (9) gives

S(t) = e−0.0402t(1.0196− 0.0196e−1.5295t)

and the approximate formulae (10) gives

S(t) ≈ e−0.0407t(1.0197− 0.0197e−1.5295t).

For this case ε = qp−2 ≈ 0.025 and one can see that the approximate formulae gives enough good result

6 Conclusions

Some general model for degradation and survival of biological objects is proposed. For the case of high reliable
object an approximation for survival function is given. An example shows the quality of approximation.
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