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Abstract

A general model for describing, evaluation and control of most common reliability characteristics of
complex hierarchical systems with fault tolerance units and different repair policies are proposed. Some
algorithms for the steady state probabilities and the Laplace transforms of reliability functions are given.
Particular examples illustrate the work of proposed algorithms.

1 Introduction and Motivation sk P -

Up-to-day complex technical systems are characterized by the following main properties:
¢ hierarchical structure;
¢ implemented system of the state control.

Hierarchy of structure means that the system consists of subsystems each of which is also divided on sub-
subsystems etc. up to. the lowest non-divided (elementary) level. We will refer to non-divisible part of system
to as units. Usually hierarchy of structure leads to the property that the primary failures arise mainly at the
lowest (elementary) level of the system, and gradually developing leads to the failure of blocks and subsystems
of higher level, containing those elements. This means that the failures of the whole system are mainly not
instantaneous, but are gradual, i.e. from the absolutely good state to full failure state the system goes through
several intermediate states (fault stages). Such failures may change the state of the system and the quality
of its operation, but do not necessarily lead to complete system failure. From abstract point of view these
systems could be described as multi-state reliability systems. The wide review about this type of systems was
given in [1], and present-day state of the subject one can find in [2]. Some type of multi-state hierarchical
systems were considered in (3], (4].

Presence of implemented system of control (SoC) leads to the fact that the system became to be so called
Fault Tolerance Systems (FTS). The SoC detects the faults and correct them itself or give a signal about
necessity of the repair. Some times and costs (or reward lost) are needed for the repair. In the case if the




system (subsystem or any block) is turns for the repair the further degradation impossible and it is supposed
that after repair it became to be “as good as new” one. Different kind of preventive maintenance was considered
by many authors (see Gertsbakh [5] and the references therein). This means that the reliability of the system is
partially controllable. Different repair policies are possible after the gradual failure of some part of the system
detection: the whole system, only failed element, or some structural part of the system can be repaired in this
case. The case of the whole system repair was considered in [3], and the case of only unit repair was considered
in [4].

Two main characteristics are common in the reliability studies: the life-time of the system, and its steady
state characteristics under some assumptions about repair process. The ways to evaluate these characteristics
depend on the approach to the following two aspects: probabilistic and structural. Probabilistic aspect deals
with calculation of the system states probabilities, and uses them in reliability calculations. The structural
aspect considers kind of direct evaluation of reliability characteristics for any given structure of a particular
system.

The structure of system itself and its failure set are individual for each system and should be considered
for each system (or class of systems) individually. Here we will not consider special structural properties of
systems and focus on statistical properties of complex hierarchical systems reliability.

In this paper we propose a general approach to describe, model and evaluate the most common reliability
characteristics of complex hierarchical systems with various types of gradual failures and different repair poli-
cies. Some special set of “failures states” F of component of the system cause its full failure. The repair policy
is defined with special repair function. We propose the general equation for any repair function, and consider
two special cases of this function, which lead to whole system repair or only to unit repair model. We deal here
with only probabilistic aspects of modeling system reliability and focus on both of its common characteristics.

In the next section the model description is given. A formal mathematical model in the section 3 is proposed.
Two special cases are considered in the next two sections. In the section 6 algorithms for calculation of the
steady state and Lalace transform of time dependent probabilities are given, and some examples in the section
7 are considered.

2 A Model Description

Consider some complez hierarchical multi-component system subject to gradual failures of different types.
Assume that the system is constructed from blocks and branches of several levels (see fig. 1). Each block and
the following after branches and blocks forms a hierarchical subsystem of the same type as the main one. We
will refer to the blocks of the last (lowest) Jevel to as units and may be subjected to gradual failures of its own
type. Some special combination F of units failures caused the whole system failure. We will denote by L the
maximal level of units, and it is not necessary that any unit belongs to this level. Units of different levels are
possible.

Subsytems
of level 1

e & & e o o o @ " Subsystems
of any level
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Fig. 1. A complex multi-level hierarchical system.
The reliability of the system is partially controllable. In case of a failure detection some part of the system

accordingly to a given repair function f(x) is renovated. This means that it is returned to its initial state (e.g.
by replacing with a new one of the same type). ’




To specify the states space of the system and to define appropriate process describing its behavior let
us introduce vector index k = (i1,%2,...,iL(k)) which determine each unit of the system as belonging to
appropriate chain of blocks at any level with level of k-th unit denoted by L(k). Denote also by K the set of
these indices (and appropriate units) with K = #(K) number of units. Then the states space of the system
can be represented as E = {x = (zx : k € K)}, where for any k € K the integer z; represents the state of
the k-th unit in sense of its reliability. It can take different values, depending on its type, zx € {0,1,...m;},
where the exhausted state of k-th unit is denoted by my. Notice, that these numbers have no specific physical
sense, but indicate only a possible level of gradual failure of the k-th unit. The value of z; = m; means the
full failure of k-th unit. Some special subset F of the system states space E specifies the failure of the system.

Due to implemented SoC each unit of the system does not fail immediately but follows through several
stages, being so called fault tolerance unit (FTU). Let us consider the reliability model of some single FTU.
Beginning from normal functioning (NF) state a FTU typically passes through the several stages: error detec-
tion (ED), damage assessment and confinement (DA), error recovery (ER), and fault treatment (FT) before it
falls in the failure state (F). Nevertheless, due to unexpected failure it also could fails from any intermediate
state (see fig. 2).

F
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Fig. 2. State transition scheme for Single FTU Model.

The failures transfer the unit from one state to another, and these states are under control. It means that
a gradual failure can be found -and repaired. After any repair the unit is returned back to its initial state.
Fault tolerance property means that the state space of the system can be divided into subsets of normal N,
dangerous D and failure F' states. In the next section a formal description of the model in framework of
Discrete Markov Processes is given.

3 A Mathematical Model

To model the system functioning in accordance with a finite state Markov process we assume that the times of
transition from one gradual level to another, as well as the repair of a failed unit have exponential distributions.
The respective parameters may-depend on-the type-of the unit-k-€ X-and-also-on-the-entire-system-state-x.—
These general assumptions allow us to model the system reliability by using the multi-dimensional Markov

process
X={Xk(t): k€K, t >0},

with set of states E, which should be specified for any particular system. Denote also by N the set of all
normal system states, by D the set of dangerous states, and by F the set of the full system breakdown states.
Moreover it is supposed that these subsets contain “boundary” sub-subsets I'yp, I'yr and I'pp, such that the
transition to the states in D and F is possible only from the states of these subsets.

Additional assumption concerns the structure of transition intensities of such a process. The specific of the
reliability models make it reasonable to suppose that the process can jump only in neighboring states (in the
case that gradual failure arises), and some function f = fi(x) determined the states to which the process goes
in the case of a fault in k-th unit is detected and appropriate repair is completed. The repair function f can
be given by different way. The cases, when as repair result the whole system is renovated and only an unit is
renovated were considered in [3], [4]. Another repair policies are also possible, for example, some subsystem of
given level could be renovated as a repair result. This means that the transition intensities have the following
form ;




ar(x) fory=x+e; x,y€N,

M(x) fory=x+ex, x€I'n, y€D,

ﬂk(x) fory=x+ek, x,yED, (1)
pe(x) fory = f(x), x€ D,

() fory=x+er, x€I'n, YEF,

vp(x) fory=x+e;, x€l'ny, y€F.

a(x,y) =

Here and later notation e; means a unit vector with 1 at k-th position and zeros elsewhere, and a(x), B(x),
7(x), A(x), p(x) and v(x) denote the sums of appropriate intensities over all admissible in the state x indexes.
The graph of transition with appropriate intensities for typical states is shown at the figure 3.
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Fig. 3. Transition graph the model.

We will refer to the processes having these properties in possession as to a Multi-State Reliability Process
(MSRP). The intensities Ax(x) and p(x) will be called failure and repair intensities correspondingly. Different
constrains to the state space E and/or the failure set F of this process and various assumption about dependence
of transition intensities on the state give an opportunity to model a number of particular cases.

The Kolmogorov’s system of differential equations for the time dependent probabilities of the process with
transition intensities (1) and transition graph given at the figure 2 gets the form

——-—d"f;; B o _xow(oie) 4 S m(er)mleit) + Y. p¥)n(y;t),
keX yef-1(0)cD
£7r_S:;_t) = —(a(x)+ A(x) +v(x))7(x;t) + Z ap(x — ep)m(x — ex;t) +
x—erEN: z,#0
+ Y eyt x €N,
yef-1(x)CD
IO o a0+ + Y Mlx-exn(x—exf) +
x—erElND: 2i#0
e B e (x = et X €D,
x—ey€D: z),#0 :
dws;:; t) e Z y(x — ex)m(x — ex;t) + Z v(x — ep)m(x — ex;t), x€F. (2)
x—ex€CNF x—e;Elpp

In general case this system of equations gives the possibility to investigate (at least numerically) both the
stationary and the time dependent reliability characteristics of the system. Below we consider two cases, which
admit close form and algorithmic solution.

To consider some special cases we define a partial order in E as follows:

G 4 if zx <yr forall k€ K and at least for one z) < yi,
and we will use the following notations.

xk (1) is the vector x with k-th component equals to i, i.e. xx(i) = x + (i — zx)ex;
I, = isa hyper-plane with any of r-th components does not equal zero. To specify
these components we will use
Lr(G1y.eendr) = {x: zj #0,...2; # 0} is a hyper-plane with j1,...,j, coordinates does not equal zero;




I'(x) = {y: yj#0forallj: z;#0}is a hyper-plane, containing state x, and all other
states y with the same non-zeroes component, as z; # 0 in x;

pr(x) = p(0=xXp,X1,...,X =X)— a monotone path from state 0 to state x through
hyper-plane I'; such that 0 < x; <...<x =x and |x;—Xx;_1|=1;
a; = aXi-1,%;) = arg(x; —X;-1) — label of unit, which failure leads to transition
from state x;_; to state x;;
o0(x) = g(0=x0,x1,...,x=x)= [] 2elkiz),
1<i<l v(xi)
- Pr(x) — the set of all monotone paths from state 0 to the state x through hyper-plane I'(x)
containing the state x ;
Gi(x) = Y glp(x)) with G(0)=1. (3)
PEP.(x)

Note that in this notations the set Iy represents the point 0 and the set I'x represents the set of all “inner
points” of the state space E. We will also omit the index r in the case if some statement takes place for any
state x. We begin with the model under whole system repair policy (SRP-model).

4 FTS under Whole System Repair Policy

To simplify the model we will not differ now the transition intensities inside the sets N, D, F and between
these sets and preserve for them only notation A and p. For the system under whole SRP the repair function
is fe(x) = 0 and therefore accordingly to the remark above the transition intensities take the form

o= {4 325 @

and the structure of appropriate transition intensities graph is shown in the Fig. 3.
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Fig. 3. Transition graph for whole system repair policy.

-—The Kolmogorov’s system-of differential equations-for the time dependent-probabilities of the process with —
transition intensities (4) gets the form

OO 1 a0r@it) = Y i),
x€E: x#0
dwf;:; t) +y(xX)m(x;t) = k:;#o Ae(x —ep)m(x —ex;t), x€E\{0}. 5)

This system can be used for calculation of steady state and time-dependent probabilities of the system.
The system of equations for sta.txonary probabilities can be obtained by passing to limit when ¢ = oo in
(5) and gets the form

AOr0) = Y px)(x),
x€EE, x#0
YX)m(x) = D M(x—e)r(x—ex), x€E\{0}. (6)

k: z,7#0



Its solution can be represented in closed form. It is easy to see from the notation (3) that the definition of
the function G(x) provides the following recursive relation

e = 3 M-y, ™

k: 2 >0 '7(X)

With this notation the following theorem was proved in the [3].

Theorem 1. The steady state probabilities of the MSRP under whole system repair policy after failure
detection have the form

%e(X) = Z G(x)] Gr(x), forany xE€ i‘, CE. o (8)
€E

From the theorem it follows
Corollary. The failure probability mr of the system equals to the sum of the steady state probabilities over

all failure set,
TF = Z w(x). 0 (9)
xeF

The reliability function of the system coincides with the tail of the distribution for the time to first entrance
of the process X (t) into the failure set F'. This distribution can be found by solving the system (5) with initial
condition 7(0;0) = 1, where any failure state is an absorbing state, A(x) = pu(x) = 0 for all x € F. In terms
of Laplace transforms of time dependent probabilities

#t(x; 8) = /ooo e~ xr(x; t)dt (10)

the system (5) is turned into the system of algebraic equations

(s+ M0)7(0;8) — Y. px)F(x8) = 1
x€EE: x#0
(s+vx)7(x;8) = . M(x—er)i(x—exs) = 0 x€E\O. 5 (11)
k: z)#0

To represent its solution denote ¥(x, 8) = s+7(x), and in the appropriate way change the notation for functions
g(x) and G(x) in (3) by g(x, s) and G(x, s).
Theorem 2. ([3]) The reliability function of the MSRP under whole system repair policy is

R(t) =1-7p(t), (12)

—where wp(t) is the distribution of the first entrance of the process X (t) into the set F. It is given by

mr(t) = ) m(x;t), (13)
xEF
and w(x;t) has the Laplace transform
-1
7(x;8) = ['7(0; s) — Z p(x)G(x; a)] x G(x;s), x€BE. o (14)
x€E\0

5 FTS under Unit Repair Policy

Consider now the FTS under unit repair policy. The repair function for the case under consideration is
fe(x) = x4(0) and so in terms of the notations (3) the transition intensities (1) are

= (A3 3 3 e



and the transition graph has a form, shown on the Fig. 4.
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Fig. 4. Transition graph for the model under unit repair policy.

Now with the transitions intensities given by (15) the Kolmogorov's system of differential equations for the
state dependent probabilities gets the form

___dﬂ(d):; t) + y(x)w(x;t) = Z Ae(x — ep)m(x — ex;t) + Z Z pi (X (3)) (% (8); £), x € E. (16)
k: zp#0 k: z23,=01<i<m;

Notice that this general form of equations takes place for the states at any hyper-plane, I'» =T’ (i) B
{x: 25 #0,...,%3; # 0}.

The system of equations for stationary probabilities of the process can be obtained by eliminating derivatives
(setting them all equal to 0) in left side of (16), i.e. by taking the limit in both sides when t — oo,

yx)m(x) = Y Ae(x —ex)m(x —ex) + Yo Y mb@)r(xk(®), x€E. (17)

k: z,#0 k: z=0 1<i<m;

Its solution can be represented in algorithmic form. To represent the solution of the equations (17) rewrite
them in the form

y(X)m(x) = Z Ae(x — ex)m(x — ex) + Z Ae(x — ex)mro1(x — €x) +
ko>l k: zp=1

+ ¥ mea@)ma(G), xel,

k: zp=0 1<i<my

which indicates the hyper-plane to which the state x belongs. Unfortunately we can not represent the solution
of this system in a closed form. In the following theorem we propose an iterative solution of these equations,
in which the steady state probabilities from theorem 1 should be used as initial approximation. Remember
that the steady state probabilities given by (8)could be considered for different hyper-planes.

Theorem 3. The steady state probabilities for the MSRP under unit repair policy are a limit of successive
- approzimations

we(X) = nll’ngo 7™ (x), xel, CE (18)
given by the formulas
Ak (x — ex) Ak(X —ex) (n
) (x) = Z Wy & ) Z —'———W(_)l(x SRy
k: zp>1 ‘Y(X) k: zip=1 7(x) )
Xk (2 .
A o0 @), xels (19)

k: z)p,=0 1<i<my
with the initial approrimation, defined in the theorem 1,
~1

7.r,(.°)(x)= ZG(x)] Gi(x), x€I,CE, r=01,..., K,
€E

Proof. The proof follows from the properties of irreducible Markov processes with finite states space. O



Corollary. The failure probability mr of the system under consideration equals to the sum of the steady
state probabilities over all failure states, i.e.

frFE ) #®). D (20)

z€F

The recursive relations (19) provide a recursive algorithm for calculation of the steady state probabilities,
and are discussed in the section 6.

The reliability function of the system can be found as the distribution of the time to first entrance of the
process X (t) into the failure set . The distribution of the time to first entrance of X (t) into the set F' can
be found by solving the system (16) with initial condition 7(0;0) = 1, and all states x € F are considered as
absorbing states. The use of Laplace transform simplifies the solution of system (16), where A\(x) = u(x) =0
is used for all failure states x € F. Applying the Laplace transform to system (16) with initial state at zero
turns it into system of algebraic equations

(5 + AO)F(0;8) = 33 (057 (05(s )

e e
keK i=1
(8 + y(x))7(x;8) — Z Ae(x — ex)T(x — ex; 8) — Z iuj(xk(i))ﬁ(xk(i);s) = 0. (21)
k z,>0 k zp=0 i=1

The solution of this system of equations has the same structure as shown in Theorem 3. To represent this
solution denote, as before, 7(x;s) = s + 7(x), and change notations for G(x) by G(x;s) analogously to the
previous case with tilde and additional argument ”s”, where also 7(x) is changed to ¥(x; s).

Theorem 4. The reliability function of the MSRP has the form
R(t)=1-mr(t), (22)
where wp(t) is the distribution of the first entrance of X (t) into the set F. It is given by

r(t) = Y w(x;t),

x€F

and m(x;t) has the Laplace transform given by the successive approzimations

- y et . -(n) ¥
w(x;8) = "ll{rgo 7™ (x; 8), (23)
with
= (n+1) (4. i Ak (x — ex) ~(n) . Ak (X — €x) - (n) :
wntH(x;8) = Z T LM (x — ex; s) + Z 7 (x — ex; 8) +
k: zx>1 7(x) k: zp=1 ’Y(X) 3

TRy M”fﬂ(xk(i);s), A xET

k: zx=0 1<i<my = "Y(x) £: A S

with the initial approzimation, defined as

-1

#i(x;8) = 7(0; 8)G(0; s) — E Z pk(iex)Giex; 8) G(ix; s), x€E.

kEK 1<i<my,

The proof follows to the way used in the proof of Theorem 3¢ B

6 Algorithms

Recursive formulas (7) and (19) provide algorithms for calculation of the steady state and the Laplace trans-
forms of the time dependent probabilities. Bellow we discuss algorithms for calculation of the steady state
probabilities. The algorithms for calculation of the Laplace transforms of the time dependent probabilities
follow similar procedure.

Algorithm 1. Calculation of the steady state probabilities for the system under system repair
policy.



Begin. Input necessary information for the system.
Integers: K, N
Real: Ap(x), pur(x), 1<k<K, x€E.
Define set F
Create Arrays: g(x), G(x) x € E.

Step 1. For any monotone path from 0-state to the state x of length [ = I(x) = z; + ... + Tk, beginning with
1 =0, G(0) = 1 calculate recursively the functions G(x) accordingly to (7),

M(x—e
6= ¥ Mg k-
k: 23>0 i
foralll=1,2,...L=my+...+mg,andforallxeI', CE, r=0,1,...,K.
Step 2. Calculate the steady state probabilities 7(x) accordingly to formula (8)

7 (X) = ['EG(X)] Gi(x), 2ele B r=01,... k.

and the failure probability 7 according to formula (9)

TFp = E w(x).

xEF
Step 3. Print results.
End.

For the system under unit repair policy the probabilities 7,(x) depend on different values of r, so it could
be calculated only recursively.

Algorithm 2. Calculation of the steady state probabilities for the system under unit repair
policy.

Begin. Input necessary information about system.
Integers: K, N;
Real: M\g(x), pe(x), 1<k<K, x€E, ¢
Define sets I'y(x), P.(x), F;
Create Arrays: g(x), Gr(x) 1<r <K, x€E.

Step 1. As in Algorithm 1 for any path from O-state to the state x of length | = I(x) = z; + ...+ zx beginning
from I = 0 calculate recursively the functions G,(x) using formulas (7)

Grx)= 3 s Gelx—es), x€Tnr=01,..K
k: 2, >0 %

foralll=1,2,...L=m;+...+mg,andforallxel', CE, r=0,1,...,K.
Step 2. Calculate the initial approximation to the steady state probabilities 7(x) accordingly to formula (8)

() = LZ Gx)| Gilx), x€l.CE, r=0,,... K
€E

Step 3. For all hyper planes of any order r, beginning from n = 0, and given =, )(x) recursively calculate the
probabilities 7™ (x) using formula (19):

”$n+1)(x) » }: ————-'\"(:(;)e")yr,(,ﬂ)(x—ek) + Z ———'\k(:(x)e") ™ (x - ex) +
k: zp>1 k: zp=1

+ E Z #J(xl(z)) (n) (Xj(i))

k: z)p=0 1<i<m; 7( )

forallxe ', c Eandforallr=0,1,2,... K.



Step 4. Repeat the step 3 up to condition

max_max |G (x) - GIM(x)| < €
0<r<K x€l'y

holds. Put =™ (x) = m,(x).
Step 5. Find the failure probability np according to (20):

T = Z 7 (x).

z€F

Step 6. Print results.
End.

Some specific additional steps should be introduced and new formula should be developed in order to take
into account the special structural restrictions for the failure set, repair policy and other structural properties
of the system. Any additional performance characteristics of the system reliability can be calculated using
steady state probabilities and the specific structural properties of the system.

7 Examples

Consider a homogeneous hierarchical system with K units, each of which may pass through only two stages of
reliability, i.e. m = 1, and only one failed unit coulf be repaired simulteneously. This means, that the failure
and repair intensities are

Ak (x) = A) /‘k(x) =Hp

Remember that I, denotes the hyper plane with r components of vector x does not equal zero. Therefore for
any x € I'; it holds
Ax)=(K~-r)A and 7(x)=(K-r)A+rp.

7.1 Whole System Repair Policy Model

For the model with whole system repair policy due to homogeneity and one failure stage we have g(0) = go = 1,
and for any x € I',.

A
9(x) = gr = e A, r=1
,Sl:IS, (K —i)A+ip ;

Notice that the number of distinct paths from state 0 to any state x € I, with r components of vector x equal
one is r!, #[I'y] = rl. Therefore, for any x € I, the function G(x) can be presented in the form

B B (¢

=r! 1)
St e 5 1!-1 (K—t!/\-i-tg H pi

with G(0) = 1 and the notation
i\
= AT

Since the number of states in any hyper plane I, equals (), the normalizing constant C' gets the form

o= 2 VI = o () () oem)-]™

Therefore, for any x € I', holds :
' 7(x)=%.=C H pi-

1<i<r

If only the failure of all units leads to the system failure, we get

np=n(l)=7nx=C H pi.

1<i<K



If failure of any unit causes the system failure, then
tp=1-710)=1-m=1-C.

If the system fails only when L units, or more are failed then probability of failure is

w=Yr=1-¢c ¥ (¥) I n

r>L 0<r<L-1 1<isr

Remark that due to homogeneity the process X admit states aggregation, and the same result could be
obtained with the state aggregation method.

7.2 The Unit Repair Policy Model

To calculate the steady state probabilities for the model under only a failed unit repair policy we use the
state aggregation method. Due to homogeneouity the states in any hyper-plane I'; admit aggregation. After
aggregation of the states in any hyper-plane I', the process X take the form of birth and death process and
the equations (17) take the form

K/\‘fl’o = Kﬂ.‘fl’l,
(K =r)A+rp)i, = (K= (r=1))py + (r+ Dpftrn (r=1,...,K-1),
Kpitg = Mg-1,
where #, denotes the steady state probabilities of the aggregated states,
#, = P{X e I'}}.

From these equations one can find that

PO
T \r/(Q+pK’
where the new parameter p = A/u is used.
If only the failure of all units leads to the system failure, we get

oK

+P)T

ap=7(l) =g =g = a

If failure of any unit causes the system failure, then

- 1
1rp—1-—1r(0)—1-1ro—1—1r0—1—(1+p)K.

7:3—A Numerical Illustration

To illustrate the model under the both repair policies we consider the two blocks two levels system with only
one stages failure of each unit. In this system K = 4 and m = 1. For this case the hyper planes I', contain
the following states:

o = {(0,0,0,0)};

rn = {(,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1,)};

r, = {(0,0,1,1), (1,0,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,0,0)};
rs = {@1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1,)};

r{ = {1,1,1,1)}

We investigate the failure probabilities for both models as functions of parameter p. These functions are:

* wg) the failure of the system under whole systen repair policy if the failure of all units lead to the system
failure;

. wg) the failure of the system under whole systen repair policy if the failure of any one unit causes the
system failure;



« wﬁ” the failure of the system under only failed unit repair policy if the failure of all units lead to the

system failure;

® «;‘." the failure of the system under only failed unit repair policy if the failure of any one unit causes the
system failure.

The expression of these functions are:

Ty TR 6C ;
v (3+p)(2 +2p)(1 +3p)p’
rg) = 10 with

C = F@+2+2)1+30p
4

N ool
T A
® Ly
¢ Bl T

In the graphs bellow the failure probabilities for both models as functions of parameter p are shown.

8 Conclusion

Some general solutions for models of system reliability with gradual failures are derived and related algorithms
are proposed. Special computer tools are needed for real reliability system elaboration. The algorithms show
that , in general, the dimension of the problem grows with the complexity of the system. Nevertheless some
simple examples indicate that these algorithms can be successfully used for reasonable problem solution.
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