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The treatments in bio-systems correspond to respective repairs known in reliability. Some treatments may make the biological objects 
younger; others may make them older, or not deteriorate their current age. Such kind of “maintenance” has some analogous failure/repair 
models in reliability. We use it to incorporate some results of reliability and bio modeling for the quantitative studies of the aging and 
resistance of bio-systems to environmental stress factors. We call “calendar age” the age of a bio-object which does not use treatments, or 
uses it without age improvement, or deterioration. All bio-objects, which are using treatments of same strength and direction of effect, 
have “virtual age”. We explain here what the virtual age is, and how is it related to age correcting factors. We illustrate our common 
results about the virtual ages on the example of the Gompertz-Makenham law of mortality, and discuss the relations of the longevity, 
mechanism of aging and age affecting control. As a consequence, a concept of age determination is proposed. Numeric and graphical 
examples are provided. 

 
1. Introduction 
 
This study has been induced by the number of presentations and articles presented at the First 

French-Russian Conference on Longevity, Aging and Degradation Models in Reliability, Public 
Health, Medicine and Biology (LAD’2004), hosted by the Saint Petersburg State Polytechnic 
University, Russia in June 5-11, 2004 [1], [5], [6].  It has been a demonstration that probability and 
statistical methods cover an enormous ground of research and can successfully handle most of 
situations involving uncertainty in any area of human activity. One of these is the study of biological 
systems, particular case of which is every kind of live organisms. 

 
1.1 Bio-Systems as Devices 
 
Bio-systems can be considered as a specifically organized devices constructed to perform some 

preset functions, according to their genetic programs. These functions are performed in the presence of 
a great number of random factors (environmental conditions). Following Koltover [5], we may 
schematically consider any operation bio-system as a multi-dimensional time-dependent random vector 

1 2( ) ( ( ), ( ),...)t Y t Y t=Y  each component of which corresponds to a relevant functional parameter of the 
device. There exists a relevant subset S of points in the space where Y(t) belongs which corresponds to 
the feasible (admissible) values (limits) of the functional parameters. If  Y(t) є S, then the device (bio-
system) is defined as having normal operation at the time t. Whenever Y(t) passes beyond the limits of 
S, then the device gets a failure. Sometimes S may also depend on time, or may be a random set. It is 
assumed Y(0) є S. Life time of the device as a whole is defined by the random variable 

})Y(,0:max{ Sttt ∈≥=τ .                                                (1)  
It represents the time of non-failure operation of the bio-system. The life time distribution is presented 
by the function 

( ) ( )F t P tτ= ≤ .                                                            (2) 
 1.2 Reliability of Bio-Systems 
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Reliability of the bio-system is the probability of non-failure operation within the interval of 

time (0,t), i.e.  
( ) ( )R t P tτ= > .                                                            (3) 

For bio-systems it is known as survival function, and denoted by S(t) 
 Consequently, all the statistical procedures used in reliability theory can be used in evaluation 
of the reliability function R (t) from many independent copies, N, of independently operating bio-
systems as the ratio N (t)/N. Here N(t) is the number of those bio-systems which are alive (do normally 
operate) at the instant t. Also, the mortality rate function 

/ ( ) ( )( ) ln ( )
( ) 1 ( )

d R t f tt R t
dt R t F t

λ = − = − =
−

                                                  (4) 

appears as an analogue to the failure rate function, used in technical reliability. The f(t) here is 
probability density function of the life time distribution. The time t just survived by a bio-system is 
called its calendar age. Therefore, the same mathematical theory of reliability is essentially applicable 
to the mathematics of mortality. Our article is a step in this direction. 
  

2. Main Models and Results 
  
The specification of components of the random vector Y(t) for bio-systems, the use of random 
modeling and analysis helps to understand how the improvement of its reliability can be attained, and 
how to keep a better control on the survival of such systems. There are lots of analogies as well a 
number of specific differences in modeling and studies of reliability of technical devices and for the 
bio-systems. For instance, bio-systems are obviously subject of wearing and aging. Bio-systems have a 
proven life-span (something like a maximal value of the life time τ beyond which no copy of the bio-
system can pass).  Life span for people is, for instance, 120 years. Life spans have also most of the 
functional components of the bio-systems. Life span for people’s brain is 250 years. For technical 
devices the exponential, the Weibull, the Gamma, and even the Norman distributions frequently fit for 
modeling the life times. For the bio-systems, despite of their complexity, there exists some “universal 
kinetics of the growth of mortality with the age”, expressed by the Gompertz-Makenham law of 
mortality 

( ) tt eγλ β α= + .                                                            (5) 
Here the parameters α, β, and γ > 0 are independent on time. The Gompertz – Makenham 

mortality law has been confirmed for people and for other mammals, flies, mollusks [5] with specific 
values of its parameters. From [5] we find that for people parameter β ≠ 0 if the age is less than 35 
years, and β = 0 if the age is greater than 35. We treat this parameter β as a collaterals mortality rate 
(e.g. accidentals, casualties), and guess that its numerical value may vary for different countries and 
species. For our numeric and graphic examples later we take the value of  β = .0025. Values of 
parameters α ≈ 42.827± 8.85 years, and γ ≈ .094 ± .0014 years 1−  are assumed (evaluated) for ages 
above 35 and less than 95, according to [5].  
 We consider here the effects of drug use that may slow down, or accelerate the aging for people 
in a proportional fashion as it is modeled and used for technical items in [2] and [3]. Then we study 
graphically the effects on mortality rates and the life span on people as functions of the age reducing, or 
age accelerating effects depending on the dosage of medication or treatment. Numerical examples are 
using values seeming reasonable for the people. 
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3. The drug use effects 
  

The most convenient description should be given in terms of the mortality rate function )(tλ and 

the related to it hazard function ∫=Λ
t

duut
0

)()( λ . There is a convenient relationship between the 

probability characteristics of the original lifetime X of an individual and these functions. 
Let the initial life time, X, be a continuous random variable (r.v.) with c.d.f. 

F(x) = P(X � x), and have a  p.d.f. )()( xF
dx
dxf = . Then its   hazard function is 

)](1ln[)( tFt −−=Λ  for t � 0 ,                                           (6) 
and its mortality rate function is   

)(1
)()()(
tF

tft
dt
dt

−
=Λ=λ .                                                   (7) 

In reliability works is shown that the temporary failures which do not affect the failure rate after 
recovery (known as minimal repairs), have Poisson distribution with mean Λ(u + v) - Λ (u) for their 
total number within any time interval [u, u + v),  u, v >0. 
 Drug use activities may improve the performance of the individuals and give them a ``new life''. 
The specifics of the drugs, its intake amount of labor, recovery time, or money invested in the health 
care may have significant impact on the health improvement, which directly affects the longevity of 
life. If assume that health improvement prolongs the life of such individuals by certain percentage δ, 
we call it an age- reducing factor. Fig. 1 a) and the model (8) below explain how it happens with 
actions made on the individual mortality rate. 
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  Fig.1 a) Individual mortality rate under age-reducing factor     Fig.1 b) Individual mortality rate under age-accelerating factor 
 

Fig. 1. Changes in the individual mortality rates in time with an age affecting factor 
 

We consider also drug abuses (analogous to the reliability maintenance under imperfect repairs) 
that may shorten the life. Such actions affect the future performance of the individual, and are related to 
an age-accelerating factor δ, which is equivalent to reducing the overall life of such individuals by 
certain percentage δ. Fig. 1 b) and the model and the theorem below explain how it happens changes in 
the individual mortality rate. 

Let iX  denote time intervals between successive epochs of drugs intake that affect the 
individual. Assume that iδ denote the lack of perfection the life system of an individual may get as a 
result of the i-th action. The values 

0 ,T  1 ,i i i iT T X δ−= +   I = 1, 2, 3, …                                         (8) 
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are understood as virtual ages of the individual right after the i-th action. When iδ  = 1, then no 
improvement or deterioration of the virtual age of the individual occurs at the i-th epoch of action. 
When iδ  < 1 (or if iδ  >1), then an improvement (or a deterioration) of the virtual age of the individual 
occurs at that epoch. 

The model described here is also known in Reliability as Kijima’s model II [4]. 
 We consider this model with the assumption that iδ  = δ ≠ 0, and call this δ an age-correcting 
factor. If δ  < 1, we call it age-reducing factor, and if δ  > 1, we call age- accelerating factor. 

Assume instantaneous effects, continuous non-decreasing virtual hazard function 
*( )tΛ as a function of the time parameter t, and having right derivative * *( ) ( )dt t

dt
λ = Λ | 0t+ . The 

subscript here indicates that the value of *( )tΛ  is considered immediately after an occasional age-
reducing action is completed. 

Consider the sequence 0T < 1T  < 2T  < . . . < nT  < . . . of times representing the virtual product 
age after the n-th coincident action. Assume that X has a c.d.f. F(x) with F(0)=0 and F(x)<1  for all x > 
0.   Denote the survival function by ( ) 1 ( )F t F t= −  = P{X>t}. 
We derive the following expressions.  

The n-th step transition probability function is 

1 1{ , , }n nP T t T T+ > L = { }nTtP X X
δ δ

> >  = 
(max[ , ])

( )

n

n

T tF

TF

δ δ

δ

 ,                 (9) 

    for n = 1,2, L . The initial distribution is 

1{ }P T t>  = 1{ }tP X
δ

>  = ( )tF
δ

 .                                             (10) 

From (9) and (10),  by induction, we get that for any non-negative measurable function 
1( , , )ng t tL  and for any n it is true that: 

E[ 1( , , )ng T TL ] = 

1 2 2 1

1 1 1 13 11 2 1
1

0

( ( )) ( ( )) ( ( )) ( ( )) ( , , ) ( ) ( )
n n

n n
n

t t t t

t t tt t tF F F F g t t dF dF
δ δ δ δ δ δ

− −

∞ ∞ ∞ ∞ ∞
− − − −−∫ ∫ ∫ ∫ ∫L L L .          (11) 

   Let { , 0}v
tN t ≥  be the counting process corresponding to the point process 0{ }n nT ∞

=  
defined by 

[0, )
0

( )v
t t n

n
N I T

∞

=

=∑ , 

 
where  ( )BI ⋅  is the indicator function of the set B. 
 

Theorem 1:  The random process { , 0}v
tN t ≥ is a non-homogeneous Poisson process with a leading 

function 

( ) log[1 ( )] ( )v t tt F
δ δ

Λ = − − = Λ ,                                        (12) 

where )](1ln[)( tFt −−=Λ  is the leading function of the NPP associated to the life time X of this 
individual. 
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 The proof can be found in [3]. 
Equation (12) shows that the transformation between the calendar and the virtual time scales is 

vtt
δ

→ , i.e., if the virtual age of the individual is  vt  its corresponding calendar age t is /vt δ . 

Therefore, we may expect that when the calendar age of an individual acting under age correcting 
factor δ is t, then its virtual (we would say, actual) age is δt. 
   Denote by T the r.v. representing the virtual lifetime of the individual. The c.d.f. of T  is 

( )( ) 1
v t

TF t e−Λ= − . Equation (12) also shows that ( ) ( ) ( ) ( )T X
t tP T t F t F P X
δ δ

≤ = = = ≤ . Therefore,  

P(T≤ t) = P(δ X≤ t), and this means that the virtual lifetime T and the multiplied by δ calendar 
lifetime  X  are  equal in distribution, i.e. 

dT Xδ= .                                                                   (13) 
When the individual is at calendar age x its virtual age measured at the calendar age scale is δx. 

At calendar age x an individual maintaining himself under age-correcting medication of factor δ, lives 
as a new individual at age δx. Thus 

*( ) ( )x dx x dxλ λ δ=  
i.e., the probability to have a failure of the individual from the original population within the interval 
[x, x + dx) is the same as the probability to have a failure from the population of individuals, 
maintained by age-affecting actions of factor δ, within the interval [x, x + δ dx). 

The relation 

∫=Λ
x

duux
0

** )()( λ , and ∫=Λ
x

duux
0

)()( λ , 

leads to 

).(1)(* xx δ
δ
Λ=Λ                                                      (14) 

Theorem 2:  The virtual failure rate )(* xλ  at calendar age x, and the original failure rate are related by 
the equality 

)()(* xx δλλ = , x ≥ 0, δ ≠ 0;                                                (15) 
The virtual hazard rate )(* xΛ and the original hazard rate Λ(x) are related by equation (14). 

An age-reducing factor δ slows down the aging process of the individual by 100(1-δ) %. 
 

Example 1 The Gompertz-Makenham life-time distribution with an age-affecting factor. 
        Consider the Gompertz-Makenham life-time distribution, ( ( , , , ))X Gompertz tλ β α γ∈ , which 
is proven to fit the cells and most mammal’s life [5]. From relationships (10) – (12) we get 

0

( }
( / )(1 )

1( ) { } 1 1

t
u

t
e du

t eF t P T t e e
γ

γ
β α

β α γ
− +

− − −
∫

= ≤ = − = − ,                           (16) 
and  

( / )(1 )( ) ( )
tt t ef t e e
γγ β α γβ α − − −= + , 

with λ(t) given by equation (10), and 

Λ(t) = (1 )tt eγαβ
γ

+ − ,  t ≥ 0. 

Here β is a constant rate parameter, α is a secondary time-scaling parameter, and γ is an aging 
rate parameter. 
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        If the individual has the Gompertz-Makenham life-time distribution with parameters β, α, and γ, 
and is maintained under age-affecting factor δ > 0, then its virtual failure rate and virtual hazard rates 
are given by the equations (14), (15), namely 

*( ) tt eγδλ β α= + ,  t > 0, δ ≠ 0,                                             (17) 
and 

*( )tΛ  = (1 )tt eγδαβ
δγ

+ − ,  t ≥ 0.                                             (18) 

Figure 2 illustrates the behavior of the two functions *( )tλ  and *( )tΛ  under various values of 
 the age-affecting parameter δ. For values of the parameters α, β, and γ are taken the numbers: β=.0025 
when t ≤ 35, and β = 0 for t ≥ 0. For both cases α  = 42.827, and γ = .094 as proven to be valid for the 
human beings with an age between 35 years and 94 years, according to [5]. And respective graphs also 
are for the ages between 35 and 120 years. For ages between 0 and 35 we assume β=.0025 
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Fig. 2.b. Integrated mortality rate (hazard rate, integrated risk) ∗Λ (t) various δ. 

 
Fig. 2.  Mortality Rates and Integrated Risks in the calendar ages                       
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4. Comparative ages between different groups 

Now we illustrate one possible use of the results obtained in Section 3 by considering again the 
Gompertz-Makenham life-time distribution.  We will think in terms of the human beings as belonging 
to various groups (or populations) determined by the values of the age-correcting factor δ. As we 
noticed before, even being at a same calendar age t the individuals from different populations would 
have different virtual (or as we say, actual) age. Since the only convenient time scale is the calendar 
age, it makes sense to speak about comparable or equivalent ages between the individuals from 
different groups. Using the relationships (6), (16) and (18) we find the life-time distribution function 
for each population determined by the value δ of its age-correcting factor: 

 
)1(

1)(
tet

etF
δγ

δγ
α

β

δ

−−−

−= .                                                          (19) 
 
Equation (19) represents the probability that an arbitrary selected individual from the population 

with age-correcting factor δ will not survive the calendar age t. The function 
 

)1(
)(1)(

tet
etFtS

δγ

δγ
α

β

δδ

−−−

=−=                                               (20) 
 
is known as the survival function for the individuals in this population. Its meaning is the same as for 
reliability expressed by equations (1)-(3). We abandon the notation R(t) and leave it for cases of 
technical issues. 

 
Definition: We say, the age 

1δ
T of the individual from the population with age-correcting factor 

1δ  is  equivalent to the age 
2δ

T of the individual from the population with age-correcting factor 2δ , if it 
is fulfilled 

)()(
2211 δδδδ TSTS = .                                                              (21) 

 
In the sense of this Definition, every age of one of the two populations has equivalent 

comparable age to the other population. Ages are equivalent when the probabilities to survive these 
respective values 

1δ
T and 

2δ
T  are equal. When we pick δ = 1, we see to what calendar age of the normal 

human population and individual from the population with age-correcting factor δ will be equivalent. 
Since this is the only available age information, when we know δ we may see what the true age of an 
individual from the respective population.  

However, we notice that equations (21) may be quantified, since these are probabilities. If we 
select any probability level  p ∈  (0, 1), we will get all the equivalent ages δT (p) at this level for all the 
populations just as solutions of the equations 

 
pTS =)( δδ . 
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Fig. 3.  The survival functions and equivalent ages for the individuals 

from the population with age-correcting factor δ. 
 

Fig. 3 illustrates the equivalency between the ages of several δ-populations at the survival 
probability levels  p = .9 and p = .7. The continuous black line traces the “normal population” where δ 
= 1. The meaning of the numbers is following: At level .9 the age of the normal population is, say, 33. 
The age-accelerated population with δ = 1.5 will look like this 33 years old people already being at age 
28. Similarly, looking on the graph for the equivalent ages at probability level .7, we notice that the end 
of life for average individual from the normal population is about 95 years, while for these  from the 
age-accelerated population with δ = 1.5 it will be about 64. 

We evaluated the equivalent ages for several probability levels, and the results are shown on 
next table. In bold black digits are shown the respective ages for the normal population at the 
corresponding level of survival. In the same line of the level are shown the ages in the other 
populations, at which an average individual would look (have the age) like this in the normal 
population. One may see some unreal numbers which we also need to comment. For instance, at level 
.25 individuals in the normal population have properties as 75 years old, while same properties would 
be in possession by the average individuals at 82 years age if they reduce their ages regularly by a 
factor δ = .9 (an improvement by 10 % compare to the normal). In the same line we see that the same 
properties would have the 114 year old people in the population who got 40 % improvements regularly. 
Finally, we see that as a 75 year old normal individual would have be an individual at age 197 if it was 
possible to reduce the age regularly by 70 %. Numbers in the last column are somewhat unreal, because 
they represent a mystic dream for such high level of age reduction. 
 

Table 4.1.  Equivalent ages under various age correcting factors at different levels of survival. 
 

p    
δ 

1.5 1.25 1.1 1 .9 .6 .3 

.9 28 30 31 33 34 37 39 

.7 42 45 50 58 61 80 112 

.5 48 55 61 66 72 98 158 

.25 53 62 69 75 82 114 197 

.1 57 66 75 81 89 125 220 
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Fig. 4.  Equivalent ages for various values of age correcting factor and various values 
of the age-correcting factor. 

 
On Fig. 4 we show the same numbers in the table as a graph of the equivalent ages that can be 

approximate to get equivalent ages at any survival level. This graph could be used as a chart for a 
number of useful comparisons. The black middle line shows the calendar age of the normal population. 
If one chooses an age, let say, 50 within his population, and draws a vertical line at the heights of the 
points of intersection with the other graphs one may find at what calendar age the individuals from 
other populations are, which is equivalent to his. Taking an individual from the normal population at 
any age in the same way it can be shown to what age he would have been if he was using age 
corrections as do the individuals from the other populations. 
 We believe that there is a fresh idea about how to treat age related questions, how to compare 
ages among different populations, and even, how to work out an approach towards the accelerated life 
testing based on the above considerations. And this discussion we postpone for another article. 
 
 

5. Life supporting (insurance) costs associated with an individual during some assigned 
time 
 

Certainly, there are some costs associated with any improvement or deterioration. Denote by  
( , )rC u δ  the cost of an age-affecting action of factor δ at calendar age u of the individual.  A natural 

assumption is that ( , )rC u δ   satisfies the inequalities  
 ( )mC u  ≤ ( , )rC u δ  ≤ ( )cC u , 

where ( )mC u is the cost for the minimal support of the individual at calendar age u, and ( )cC u  is the 
cost of  the complete (radical) loss of the individual at age u. In the sequel we develop a radical 
modeling for comparing of the expected expenses associated with the life support of individuals under 
regular life-supporting “maintenance”, and these with age-affecting factors. As a matter of fact, the 
comparison of the virtual ages of individuals at the same calendar age T indicates that those who have 
used an age affecting action of factor δ differ from the what this calendar age is. These are based on 
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comparing the values of the survival functions given by equations (20), Table 4.1 and Fig. 4 shown in 
the previous section. Struggle to keeping a constant age-correcting factor we call maintenance policy 
for the life style. Hence, the life supporting costs depend on the insurance agreement and the 
maintenance policy. 

We assume that an individual is covered by insurance for some calendar time of duration T, 
according to a certain policy agreement. 

Consider cost modeling from insurer’s point of view.  The insurer covers all, or a portion of the 
expenses associated with the needs and supports of the individual starting at age 0t , until the expiration 
of the insurance coverage, or until the death of this individual. In occasion of a death at age u the 
insurer pays the amount C(u, δ), if the case is within the time of the action of the insurance agreement.  

 
5.1. Expected insurance costs for a policy with limited validity 

 
Consider an insurance policy, which starts at age 0t of an individual, and will last time of 

duration W, i.e. the insurance policy is valid during the calendar age [ 0t , 0t + W] of that individual. On 
the other hand this individual has been maintained, and will maintain his life under an age-affecting 
factor δ. Assume, that the original life time X of the population at this site has failure rate function  λ(t).  
During the coverage no partial claims are possible. 

The effect of the initial age 0t of the individual at the start of the insurance coverage is also a 
parameter of interest, which may affect the expected insurer’s expenses. The collected premiums 
usually are proportional to the elapsed time, u, and may depend on the initial age 0t  when the policy 
starts, and the supposed age-affecting factor δ. Therefore, the collected premium on the interval [ 0t , 0t + 
u) equals C( 0t , δ)u. If the failure is beyond the assigned insurance period, the insurer incurs no 
expenses.  If the death occurs at a moment on the interval [ 0t , 0t + u), the insurer refunds the insured by 
the amount C(u, δ), thus his expenses are determined according to 

C(u) = C(u, δ) - C( 0t , δ)u . 
Particular forms of these functions are assumed.  Most common seems  

C(u, δ) =C= const, and  C( 0t , δ) = 0 1 0 2 ( 1)c c t c δ+ + − ,                              (19) 
so that if the individual maintains the regular way of life he pays no addition or gets no discount  
expressed by the third component. 
 
Lemma 1 The expected insurance cost associated with an age correcting factor δ for an individual 
insured at age 0t  with coverage of duration W is given by 

0 0
1-[ ( (t )) ( t )]

0 0 0 0
0

( , ) {C(t +u, ) - C(t , )u} ( (t +u)) e
W

u

WC t du
δ δ

δδ δ δ λ δ
Λ + −Λ

= ∫ ,              (20) 

where λ(t) and Λ(t) are the original failure rate and hazard rate functions associated with the life time X 
of the an individual in the population.  
 

Example 2  The Gompertz-Makenham life-time distribution with an age-affecting factor 
         
Assume, that the contract prices C(u, δ) and C( 0t , δ) for an  individual insured at age 0t , are given by 
the equations (19). Then as a Corollary of Lemma 1 and the previous discussion we get: 
Corollary 1  Under the conditions of Lemma 1, and (17)-(19), the expected incurred insurance costs 
are given by the expression 
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 V 0( , )WC t δ =  

0
( )0 0

0 0

0

(1 )
( / )(1 ) ( ) ( / )(1 )

0 1 0 2[ ] [ ( 1)] ( )
u

t t W
t W u e

t e t W e u

t

C e e c c t c u e e du
γδ

γδ γδ
αβ

β α γ β α γ γδ δγδ β α
+

+ − − −
− − − − + − −− − + + − +∫ . 

We work on graphical illustrations of the dependence of 0( , )WC t δ  on the individual’s age 0t  at 
the time of enrolment into the insurance, for the Gompertz-Makenham lifetime distribution with 
parameters as for human beings, and for different values of the coverage period W  in years.  

   The effects of increase or decrease of the insurance premiums and costs should be 
justified. The dependence of the costs and premiums on the calendar age 0t  of individuals and its 
interaction with the age correcting factors might be reviled.  
 
6. Conclusions 
 

Age-affecting actions on live individuals may have feasible models, and the life supporting 
(insurance) cost for some natural policies can be analyzed by making use of approaches similar to those 
in reliability maintenance and warranty cost analysis.  

It is shown that the failure rate function and hazard function provide more convenient tools to 
age-dependent life modeling than the approaches based on the direct use of probability distributions of 
the individuals life times.  

Numerical and graphical examples illustrate the use of the proposed models with Gompertz-
Makenham mortality rates and respectively distributed life times with an age- correcting factor for 
comparing ages between individuals. 
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