MAGNETIC RESONANCE IN MEDICINE

Criteria for Analysis of Multicdmponent Tissue T,

Relaxation Data

Simon J. Graham, Ph.D., Peter L. Stanchev, Ph.D., Michael J. Bronskill, Ph.D.

Monte Carlo simulations were performed to determine
whether the multicomponent T, distribution of tissue can be
estimated accurately from T, decay data acquired in vivo.
Simulated data were generated for white matter, fast twitch
muscle, and breast tissue. The signal-to-noise ratio, number
of data samples, and minimum echo time were varied from the
experimental conditions currently achievable with MRI to
those achievable for in vitro experiments. Data were fitted by
a distribution of T, values using the T2NNLS algorithm, and
statistics characterizing the estimated T, components were
determined. Current MRI techniques were found to provide
conditions insufficient for accurate muiticomponent T, anal-
ysis on a pixel-by-pixel basis. However, volume localization
methods that measure T, decay from a large volume of inter-
est have potential for this analysis. These results illustrate a
general framework for development of new techniques to
measure T, decay accurately in vivo.

Key words: T,; relaxation time distributions; in vivo relaxom-
etry; Monte Carlo simulations.

INTRODUCTION

Numerous studies of the magnetic resonance (MR) relax-
ation properties of tissues indicate that the T, decay of
tissues is poorly represented by a single exponential.
Most tissues exhibit several T, components in the range
from 1 to 1000 ms that contribute different fractions, or
weightings, to the net T, decay. Precise reasons why
specific tissues exhibit multiple T, components remain
unknown, although they are related to diffusive or other
exchange processes between or within microscopic het-
erogeneous water environments in tissues. Knowledge of
the multiple relaxation components that characterize tis-
sue T, decay has direct application to optimization of
MR imaging protocols (1). In addition, accurate multi-
component T, relaxation analysis is beginning to provide
tissue-specific information in some applications, despite
past literature reviews suggesting that tissue T, and T,
values are not diagnostic (2).

Several examples illustrate the capabilities and poten-
tial applications of multicomponent T, relaxation analy-
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sis. Studies of excised tissues have shown that fast and
slow twitch muscle can be distinguished by their respec-
tive T, distributions, for investigation of neurogenic and
myogenic disease (3), and that the short T, component of
white matter at 10 to 20 ms may be an indicator of
multiple sclerosis (4). This analysis of white matter is
being applied in vivo using imaging methods for spatial
localization (5). T, relaxation properties of breast tissue,
measured in vivo from a volume encompassing both
breasts, correlate with x-ray mammographic parameters
known to be a strong risk factor for breast cancer (6).

To exploit such findings clinically or in further re-
search, accurate multicomponent T, analysis must be
possible from data measured in vivo using MR scanners.
Acquisition of such data carries its own set of challenges
but we assume here that accurate relaxation data free
from systematic errors can be obtained. (The following
methodology also applies to data that are obtained with
good precision but have known systematic errors, e.g.,
stimulated echo contamination. Usage of precise data
often depends on the clinical context, whereas accurate
data have wider applicability.) Fitting such decay data to
resolve multiple T, components is itself a difficult in-
verse problem that places additional stringent require-
ments on the experimental conditions. Three parameters
are sufficient to characterize the experimental condi-
tions, or the quality of the T, decay data: the echo time,
TE, the number of data samples, N, spanning the decay
curve, and the signal-to-noise ratio. (SNR). Magnetic res-
onance spectrometers modified for relaxometry can ac-
quire high quality T, decay data with TE < 1 ms, N >
100, and SNR > 1000. By comparison, current T,-
weighted imaging protocols provide data (minimum
TE = 10 ms, N = 4-8, pixel SNR = 100) that yield poor
estimates of MR relaxation parameters. Intermediate be-
tween these two extremes, sets of experimental require-
ments for accurate multicomponent T, analysis exist that
have not been fully assessed. These requirements proba-
bly depend both on specific T, characteristics of the
tissue measured, and on the nature of the multicompo-
nent T, relaxation analysis performed.

Investigation of experimental requirements for accu-
rate multicomponent T, relaxation analysis provides a
basis for the design of new MR techniques to measure T,
decay in vivo with sufficient spatial localization. The
alternatives for providing spatial localization are analo-
gous to those for in vivo MR spectroscopy applications,
where sufficient SNR is required to detect tissiie metab-
olites present at low concentration (~1 mM) in realistic
acquisition times. Either the MR spectrum of tissues can
be mapped spatially, as in chemical shift imaging (CSI)
methods (7), or the spectrum can be determined from a
single volume of interest (VOI), as in single voxel volume
localization methods (8). When CSI is used, spatial lo-
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 calization is obtained typically by slice-selective excita-
tion and phase encoding in two dimensions; when vol-
ume localization is used, a VOI is isolated in three spatial
dimensions using selective RF pulses, without phase en-
coding. Volume localization thus allows acquisition of
MR spectra with full T, recovery in times much shorter
than is possible with CSI. For example, proton MR spec-
tra with sufficient SNR can be obtained typically in <10
min with volume localization, whereas CSI requires ac-
quisition times of approximately 30 minutes (9, 10). The
gain in SNR per unit time provided by volume localiza-
tion is, however, achieved at the expense of spatial res-
olution and volume of coverage. The choice of method
for spatial localization therefore depends on the particu-
lar application.

Both imaging and volume localization techniques have
been developed for quantitative measurement of T, de-
cay in vivo. Spin-echo imaging pulse sequences for mea-
surement of T, decay in a single slice have been devel-
oped (5, 11) that are robust to experimental imperfections
and increase N to 32, but maintain minimum TE and
pixel SNR similar to T,-weighted imaging described
above. Subsequent references to imaging methods are
made with respect to these robust techniques, unless
otherwise stated. Alternatively, a volume localization
method has recently been developed to measure multi-
component T, decay of breast tissue with a minimum TE
of 2.5 ms, N = 70, and SNR = 700, for a VOI comprising
approximately 50% of the total breast volume (6).

In this study, Monte Carlo simulations are used to
investigate data requirements for multicomponent T, re-

' laxation analysis under the experimental conditions
common to clinical MR scanners. Data sets are generated
by adding noise to signals calculated from well deter-
mined T, distributions. The non-negative least squares
algorithm modified by Whittall ‘et’ al. (T2NNLS), fre-
quently used in analysis of multicomponent T, tissue
relaxation (3, 4, 6, 12), provides a constrained fit to the
simulated T, decay data sets with a smooth distribution
of relaxation times (13). Three groups of simulations are
performed. First, two variations of multicomponent T,
analysis using T2NNLS are compared to determine
which is more appropriate under the conditions of low
SNR typical for in vivo data. Second, representative tis-
sues well characterized by previous relaxation measure-
ments in vitro are analyzed, with emphasis on the fea-
tures of their T, distributions that are important for
clinical applications. The data quality necessary for ac-
curate estimation of these features is determined and
compared with that achievable using imaging methods.
Third, multicomponent T, analysis of breast tissue is
assessed and compared to data obtained in vivo with
volume localization (6). This comparison determines the
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relative contributions of statistical uncertainty and bio-
logical variability in the T, distributions. These simula-
tions are shown to provide a general framework for as-
sessing whether multicomponent T, relaxation analysis
of in vivo data is feasible in specific applications.

METHODS
Simulation of 7, Data -

From the literature, nominal T, values and relative
weightings were obtained for T, components of white
matter, fast twitch muscle, and slow twitch muscle at
1.5 T (4, 3), shown in Table 1. These tissues have been
carefully characterized in vitro and the distribution-pa-
rameters are assumed to reflect the true T, distributions
of these tissues accurately.
Simulated T, decay data were generated from

]
Yn=Yo E .[D’(TZ)G-(,, TETIT, + €0, 0), [1]

j=1

where y, represents signal amplitude measured at time
intervals TE with n = 1,2, . . ., N; y, represents the initial
amplitude of the signal (arbitrarily set at 100); the sub-
script j represents each relaxation component (J compo-
nents in total), and D(T,) is the piecewise continuous
portion of the T, distribution associated with component
J. Because tissue T, decay is not well represented by a
weighted sum of several exponentials (14), components
were assumed to follow a Gaussian distribution with
mean T, value T,, fractional weighting w;, and standard
deviation equal to 10% of T, and were truncated to zero
for T, values greater than four standard deviations from
T,, Component widths of 10% were chosen to provide a
realistic test of the methodology, because the width of
each relaxation component in Table 1 has not yet been
reliably determined by experiment. The term €(0, o) in-
dicates the addition to each datum of zero mean, Gauss-
ian random noise of standard deviation o. To simulate
the broad range of measurement conditions possible in
vivo, the SNR value, defined as M_/o, and N were varied
in the range from 100 to 2000, and 32 to 256, respec-
tively. For each set of experimental parameters, 200 trials
were performed from which the statistical accuracy of
multicomponent T, relaxation analysis was determined.

Fitting of T, Data

The simulated data were fitted by a distribution of T,
values using the T2NNLS algorithm (13, 15) based on the
non-negative least squares (NNLS) algorithm of Lawson

Table 1 '
Nominal T, Distribution Parameters at 1.5 T for Tissues Used in Simulations

T2, 3 Ta, T2y : W, w2 Ws

- (ms) (ms (ms) (%) (%) %)

White matter 15 100 — 10 90 -

Muscle (fast twitch) 5 33 115 5 90 5

115 5 85 10

Muscle (slow twitch) 5 35
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and Hanson (16). With tlﬁs analysis, the T, decay data’

_ are represented by a system of discrete linear equations:

M
e 25, a0, [2]

m=1

where S, is the estimated amplitude of the T, distribu-
tion (the number of protons with a particular T, value) at
position T, , and e""™ T js the associated exponential
decay for each T, . The S, values are constrained to be
non-negative (i.e., positive) as a direct result of the NNLS
algorithm. To span the T, values of the distributions in
Table 1 appropriately, 50 T, values were chosen equally
spaced on a logarithmic scale, extending from a lower
limit of 1 ms to an upper limit several hundred millisec-
onds above the largest T, component value for each
specific tissue. An additional large T, value (10 - T,,)
was included, for which the exponential term in Eq. [2]
was approximately unity, thus, the corresponding S,
value provided an estimate of constant baseline offset.

The S, and thus y,, values are determined by mini-
mization of

. n—-llz 1 .
E '(—y—?.sz'l+;f(s‘h Sisiee, SM)- [3]

n=1

The first term provides the standard least squares mini-
mization common to many fitting algorithms. The pres-
ence of noise, however, ensures that there are a large
number of T, distributions that satisfy Eq. [3] within
experimental error. For example, Brown has investigated

the difficulty involved in distinguishing continuous T, g
distributions from distributions corresponding to a small ***
number of discrete exponentials (17). The approach -
« ~adopted here is to restrict the set of T, distributions '
¢+ according to the “principle of parsimony,” which re-'"

quires that the most appropriate solutions are the sim-
plest ones, i.e., those that are least complex. The second
term in Eq. [3], known as a regularizer, provides addi-
tional constraint to ensure a parsimonious set of T, dis-
tributions.

In this study, the regularizer was chosen as the energy
of the T, distribution: .

M ;
£S5, 8.4 8= D 8.2 (4]

m=1

When the energy of the T, distribution is minimized
together with the least squares misfit, smooth, low am-
plitude T, distributions are obtained. These “minimum
energy constraints” have been applied previously (13)
and provide estimated T, distributions similar to those
produced by other regularizer functions, such as first or
second derivative constraints (13, 14).

The strength of regularization in Eq. [3] depends on the
value chosen for the constant p. Very large p values
reduce the constraints, and in the limit result in a con-
ventional unregularized least squares fit producing a T,
distribution that consists of delta functions. Very small p
values produce broad, overconstrained distributions.
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Some strategy is therefore required to choose an appro-
priate intermediate value. Previously, Whittall and
MacKay (13) have selected p according to the y* misfit:

N e
f=29%¥i. [5]

i.e., the first term in Eq. [3). For large N, the expected
value of y*is N, corresponding to an acceptable fit where
the difference between each measured and estimated da-
tum, y, — 7,, is the standard deviation of the noise, o.
The standard deviation of x?, however, is approximately
J2N and so distributions that result in x* misfits approx-
imately 1 standard deviation from N can all be consid-
ered acceptable. Unacceptable fits have y* > N, indicat-
ing that the fitted curve does not follow the data, or have
Xx* < N, indicating that the fitted curve follows the data
too well and is strongly influenced by noise. The latter
case is typical of T, decay data (13). Therefore, a logical
strategy is to choose p such that

¥=N+xN (6]

for all fits, with 0 = x < 1. For this “constant y* con-
straint,” T, distributions obtained from different data
sets can be compared effectively because they all have
the same x* misfit. In practice, this procedure necessi-
tates multiple applications of T2NNLS to the same data
set while adjusting u iteratively until Eq. [6] is satisfied,
and any data sets producing an unregularized y* misfit
larger than Eq. [6] are rejected.

Constant x* constrm:nts are only one of many possible

'.lstravteg'ies for choosing p, and in particular, may not be : -
-optimal for the reduced data quality that is expected for" "

in vivo T, decay data. Therefore, an alternative strategy,
termed “least squares-based constraints,” was also inves-"

-tigated that slightly regularizes all data sets equally'on a

percentage basis. Specifically, u was iteratively adjusted
such that

(100% + y)

100%" (7]

Xz b Xz min
where x*,..;,, is the unregularized least squares misfit, and
y is a constant that determines the percentage increase in
x* above ¥* ... No solutions are rejected with this set of
constraints. The range of useful y values was investigated
empirically.

Analysis criteria

T, distributions obtained by both constraint methods
were analyzed by calculating the T, value (first moment),
relative weighting, and width (second moment) of each
component, and <T,>, the mean T, (first moment) of the
entire distribution. Estimated components below specific
threshold T, and weighting values for each tigsue were
labeled “spurious,” and were ignored, to eliminate the
dependence of the fits to the initial T, decay samples,
and to remove any estimated T, components largely hid-
den within the T, decay noise envelope. Overlapping
components were judged to be adequately resolved when
the minimum between components was <70% of the
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amplitude of the smaller component. For each set of 200
trials representing a specific set of experimental condi-
tions, the “admissibility” (percentage of distributions
with the correct number of components) was calculated,

as well as the mean and standard deviation of each pa-

rameter estimated from the T, distribution.

The two strategies for applying constraints were ini-
tially compared by performing three tasks: a) assessment
of admissibility for white matter under conditions of
fixed N and TE, for varying SNR; b) assessment of the
SNR required to resolve two components with T, values
separated by a factor of three; c) assessment of the width
of a single T, component for fixed N and TE, and for
varying SNR. Results favored the least squares-based
constraint with y = 1%, which was used at low values of
SNR and N. '

For white matter, fast twitch, and slow twitch muscle
simulations, SNR was varied for different values of Nand
TE, to assess the level required to determine T, distribu-
tion parameters within a specific tolerance (typically a
standard deviation of <10%). The component of white
matter with T, = 15 ms may reflect the water associated
with the myelin sheath of neurons, and decreased

" weighting of this component has been correlated with
demyelination (4). Simulations were therefore performed
to determine the SNR required to estimate the weighting
of this component accurately, as well as the optimum
echo time, TE,,, for a range of different N values. For fast
and slow twitch muscle, distinguishing the two tissues is
of interest. From Table 1, the first moments of the T,
distributions for fast and slow twitch muscle are 35.7 ms

-and 41.5 ms respectively. Therefore, the SNR required to
estimate <T,> within 1 ms was determined for various
conditions.

Simulation of in vivo measurements of breast tissue :

Simulations were also performed to investigate further
the T, distribution parameters of breast tissue obtained
from measurements of female volunteers using volume
localization, acquired in 40 s (6). This methodology, de-
signed to address whether MR measurements can be used
to assess risk of breast cancer, has not focused in detail
on the T, distribution of breast tissue. The T, distribution
reflects biophysical properties of tissue related to the
dynamics of water and fat molecules, and potentially
contains additional information to improve risk assess-
ment. Previous measurements have indicated that the
mean value of the T, distribution shows significant vari-
ations over the wide range of breast tissue characteristics
found in women (6), but analogous variations could not
be detected for specific component T, values and weight-
ings within the T, distribution. These results are initially
counterintuitive. Simulations were performed, therefore,
to determine the variation in the estimated T, parameters
arising solely from errors in multicomponent T, relax-
ation analysis, under conditions closely approximating
those of the actual measurements in vivo.

Shown in Table 2 are the mean and standard deviation
of the three T, components of breast tissue obtained by
volume localization in 29 of the 38 female subjects (6).
(Of the other nine subjects, seven exhibited two T, com-
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Table.2
Three T, Components Obtained in 29 of 38 Volunteers
Parameter Mean Standard deviation
T, (ms) 34 12
T, (ms) 105 29
Tz, (Ms) 340 114
w, (%) 25 11
W (%) 55 9
ws (%) 20 12

ponents, and two exhibited four T, components.) Simu-
lated T, decay data were generated and analyzed as de-
scribed previously, using the values in Table 2, and the
same TE and number of data samples used in the actual
experiments (TE = 16 ms, N = 70). Component widths of
10% were assumed. A wide range of SNR values was
chosen based on the actual distribution of SNR values for
the volunteers shown in Table 3. Wide variations in torso
size of the volunteers, and the large sensitive volume of
the surface coil, are responsible for this range of SNR
values. Because the uncertainty in estimating T, distri-
bution parameters is largest at low SNR values, Table 3 is
shown with unequal SNR intervals, with the interval size
increasing as SNR increases. These intervals provide ac-
ceptable local averages of the uncertainty in estimating
T, parameters with T2NNLS. The mean and standard
deviation of the T, distribution parameters were evalu-
ated for the SNR values shown in the middle column,
combined according to the frequency distribution, and
compared with the estimates obtained from the actual
data.

" RESULTS

Comparison of Constraint Strategies

Figure 1 shows admissibility versus SNR for white matter
for different applications of constant x* and least-squares
based constraints (N = 64, TE = 3.5 ms). All estimated
components with T, < 8 ms or weighting <3% were
ignored. Admissibility for the unconstrained least
squares fit (y = 0) is highest at SNR = 100, but progres-
sively overestimates the true number of components for
increasing SNR values. At SNR = 1000, the admissibility
of unconstrained fits has decreased to 75%. Admissibil-
ity for least squares-based constraints, however, is >90%
over the entire SNR range and is only weakly dependent
on the chosen value of y. Admissibility for all constant @
constraints starts at approximately 25% for SNR = 100,

Table 3
Frequency Distribution of SNR for Breast Tissue Measurements

of 38 Volunteers

In?:‘rc al SNR Evaluated Frequency

0-174 100 6
175-374 ' 250 5
375-674 500 10
675-874 750 3
875-1249 1000 7
1250-1749 1500 3
1750-3000 2000 4
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FIG. 1. Admissibility versus SNR for constant x? constraints 0=
x = 1) and least squares-based constraints (0 = y < 1%). The
unconstrained, least squares fit is shown with y = 0.

and increases to a constant value for SNR > 500 that
depends strongly on x. Of the x values chosen, an admis-
sibility of >90% only occurs for x = 1.0. Slightly larger x
values (e.g., x = 1.5) provide a slight gain in admissibility
at low SNR values, but with increased bias in estimated
distribution parameters (data not shown).

Figure 2 shows the SNR required by each constraint
strategy to resolve two components with T, values sep-
arated by a factor of three, with an admissibility >90%,
and <10% uncertainty in T, and weighting estimates.
The T, values were 33 and 100 ms, respectively, w,
varied from 10% to 90%, N varied from 32 to 128, and
N - TE was held fixed at 650 ms to maintain uniform
sampling of the simulated T, decay. All estimated com-
ponents with T, <15 ms were ignored. Constant x?
constraints were applied with x = 1.0, and least squares-
based constraints with y = 1.0%. Each threshold curve
exhibits a minimum for w, = 50%, indicating that
equally weighted components are easier to resolve than if
one component dominates. For both constraint strategies,
a logarithmic dependence between N and SNR is indi-
cated by the constant shift upward of the threshold
curves on the semi-logarithmic plot, as N decreases by
factors of 2. Most importantly, however, the observed

10000 ¢ Y . Y . T v —
—0— constant 32
—-a-- |east squaru-buod

1000 |-

SNR

100 ; A P
40 60 80 100
w, (%)

FIG. 2. SNR for resolving a two component distribution versus w;
for both constraint strategies. Data were determined with an SNR

accuracy of *+50.
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thresholds for least squares-based constraints are almost
always lower than for those for constant y* constraints.

Figure 3 shows width estimates of one simulated tom-
ponent (T, = 100 ms) versus SNR for both constraints.
Component widths of 10% and 20% were investigated
with N = 64, and TE values of 10 ms and 20 ms, respec-
tively, to span the same range of decay in both cases. For
constant y? constraints, width is greatly overestimated at
low SNR values but tends asymptotically to the correct
value as SNR increases. Least squares constraints provide
mean estimates much closer to the true width for all SNR
values.

Because of their superior characteristics at low values
of SNR and N, least squares-based constraints were uti-
lized for all subsequent analysis.

White Matter

Figure 4 shows the SNR required to estimate w, for white
matter (admissibility >90%, deviation of w, <10% from
the value in Table 1) as a function of TE for N ranging
from 32 to 256. Spurious components were ignored as for
the analysis shown in Fig. 1, and y = 1.0%. For each N,
there is an optimal TE value, TE,,,, that provides the
minimum SNR. For TE < TE,,, the component of white
matter at T, = 100 ms is undersampled, whereas for TE >
TE, the component at T, = 15 ms is undersampled.
Log-log plots of the minimum SNR and TE,,, versus N
are shown in Fig. 5, which suggest that both parameters
can be described as a function of N according to

a-Nb = 10°, [8]

where a represents the SNR or TE,, values, and b and ¢
are constants.. The solid lines in Fig. 5 indicate fits of
SNR and Tl",',,lJt to this relationship. For SNR data, b =
0.56 * 0.04 and ¢ = 3.50 * 0.08 (P < 0.01), and for TE,,
data, b= 0.76,* 0.07 and ¢ = 1.95 * 0.13 (P < 0.01).

Distinguishing fast from slow twitch muscle

Multicomponent T, analysis to distinguish fast from
slow twitch muscle is at first glance more difficult than
analysis of white matter. Both T, distributions of muscle

0.20 v T - T Y T i ’
L
—o— constant
g 0.15 | - |east squares-based 7
=
3 0.10 |- ]
o
&
-
e
8‘..? 0.05 - i
0.00 R R i A SRR T\
0 500 1000 1500 2000 2500
SNR

FIG. 3. Estimated width of a single component T, distribution
versus SNR for both constraint strategies. Model widths of 10%
and 20% are shown. Error bars indicate the standard deviation of
width estimates from 200 trials.
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—a—N =128

—v— N = 256

SNR

500 |~

1 " 1 " L

o

TE (ms)

FIG. 4. SNR required to estimate w, versus TE for white matter
(admissibility >90%, standard deviation <10%). The SNR was
determined to within +50 for each datum.

1000

SNR
(sw) @3

0.1
1000

FIG. 5. Log-log plots of SNR versus N and TE versus N for white
matter. Error bars indicate the uncertainty with which SNR and
TE,, were determined from Fig. 4.

exhibit three relaxation components. Accurate determi-
nation of the component with T, = 5 ms requires a small
TE value, necessitating data sampling with large N to

. resolve the other two components with acceptable ad-
missibility. For example, for N = 256, TE,,, = 1.75 ms
and the minimum SNR is 450, or three times the analo-
gous value for white matter. In this application, however,
the first moment of the distribution, <T,>, provides
more robust analysis. The T, distributions of slow and
fast twitch muscle differ primarily in the position and
weighting of the two components with T, > 5 ms. Poor
sampling of the short T, component causes only a small
offset in <T,> that tracks similarly for both muscle
types. '

Figure 6 shows the SNR for fast twitch muscle versus
TE for different values of N. The <T,> accuracy required
was 1 ms. (Analysis of fast twitch muscle is more diffi-
cult because the component weighting w; is smaller than
for slow twitch muscle. Therefore, the <T,> accuracy for
analysis of slow twitch muscle can be assumed as =< 1
ms.) Components with T, < 2.5'ms were ignored, and y =
0.5%. Figure 6 indicates ranges of TE values that produce

similar minimum SNR values for determining <T,> ac-

curately, because precise determination of the short T,
component is not required. The dependence of the SNR
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FIG; 6. SNR versus TE for estimation of <7,> to an accuracy of 1
ms for fast twitch muscle. The SNR was determined to within + 25

for each datum.

1000

100

SNR

N

FIG. 7. SNR versus N for fast twitch muscle. Error bars indicate the
accuracy - with which the minimum SNR was determined from
Fig. 6.

value on Ncan again be represented by Eq. [8], as shown
in Fig. 7. In this case, the fitted parameters for SNR are
b=0.65 + 0.09 and ¢ = 3.6 * 0.2 (P < 0.02).

Breast tissue

The estimated T, components for breast tissue, deter-
mined by simulation of the actual experimental condi-
tions (TE = 16 ms, N = 70), are shown in Table 4. The
simulation results are close to those obtained from the
actual experimental data (Table 2). It was found that the
mean admissibility estimate was sensitive to the precise
details of the SNR frequency distribution (Table 3). The
quoted value for admissibility in 200 trials (70 * 5%)
therefore represents the mean, and maximum deviation
from the mean, obtained by performing several calcula-
tions with different bin sizes for the SNR frequency dis-
tribution. The simulation estimate agrees well with the
value of 76% obtained experimentally, representing a
difference in classification of 2 + 3 individuals in 38. All
other parameters were quite insensitive to the bin size of
the SNR frequency distribution, and therefore error esti-
mates are not given. The mean T, distribution parameters
estimated by simulation and experiment agree to well
within the standard deviations indicated. The largest
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Table 4
" . T, Distribution Parameters of Breast Tissue Estimated by Monte

Carlo Simulation

Parameter Mean Standard deviation
admissibility (%) 705 —
T3, (ms) 3530 6
T,, (ms) 102 10
T2, (ms) 344 33
w, (%) 22 5
w, (%) 59 4
wy (%) 19 3

discrepancy occurs for estimation of T, and w,. The
standard deviations of the T, dlstnbuuon parameters,
however, are less than those obtamed for the experimen-
tal data by a factor of 2 to 4.

DISCUSSION

In the past, simulation studies have been performed to
assess the accuracy of multicomponent T, relaxation
analysis for TZNNLS (13, 15, 18), and another algorithm,
CONTIN (14, 19, 20), for arbitrary T, distributions under
the experimental conditions typical of in vitro experi-
ments. English et al. also used simulations to validate
their multicomponent T, analysis of fast and slow twitch
muscle data acquired in vitro (3). We have developed a
general extension of this methodology for multicompo-
nent T, relaxation analysis of in vivo data. The applica-
bility of this analysis, either clinically or in biophysical
research, depends on the specific multicomponent T,
properties of tissues and the manner in which the esti-
mated T, distribution is analyzed, both of which are
invariably investigated initially by in vitro experiments
with the best data quality available. The information
obtained from previous in vitro measurements can be
used in Monte Carlo simulations to investigate how spe-
cific T, data can be measured in vivo, analyzed, and
interpreted, appropriately. We have used representative
examples to investigate each of these issues.

Simulations were first conducted to compare the suit-
ability of different constraint strategies for multicompo-
nent T, relaxation analysis of in vivo data using T2NNLS.
Figures 1-3 indicate that constant x* constraints, often
used for multicomponent T, relaxation analysis at high
values of SNR and N (SNR > 1000, N > 100), are sub-
optimal for the poorer experimental conditions typical of
in vivo data. At intermediate to low SNR values, least
squares-based constraints provide enhanced admissibil-
ity and allow lower SNR for estimating T, components
within a specified accuracy. Also, any systematic T, off-
set in component estimates is generally less with least
squares-based constraints than with constant y* con-
straints (data not shown).

To date, least squares-based constraints have not been
commonly applied. At extremely low SNR values, other
investigators have opted for the enhanced admissibility
provided by unregularized least squares fits (see Fig. 1).
For example, MacKay et al. used unregularized fits to
estimate the in vivo T, distribution of white matter for
volunteers with multiple sclerosis (5). The simulations
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indicate that for low SNR values, the addition of mini-
mum energy constraints to increase x* by only a small
amount (=1%) above x*,;. can provide admissibilities
>90% and decrease the uncertainty in component esti-

* mates. Least squares-based constraints also improve the

ability to estimate the width of T, components, which
may be useful for investigation of subtle variations in the
T, distributions of white and gray matter in different
regions of the brain (21). :

Analyses of simulated T, decay for white matter and
fast twitch muscle were performed with least squares-
based constraints to determine whether current imaging
techniques generate data of sufficient quality for accurate
multicomponent T, analysis. In both cases, imaging tech-
niques were found to provide sufficient data quality only
for long scan times. Typical imaging parameters are a
minimum TE of 10 ms, N = 32, and a pixel SNR of 100
(11). For analysis of the short T, component of white
matter with N = 32 (Figs. 4 and 5), TE of 10 ms is
significantly larger than the TE,, of 6.5 ms, and the
required SNR would be 700. If the time to acquire one
image is approximately 2 min (128 phase encoding steps
X 1 s TR), signal averaging to achieve this SNR would
require a total scan time of 98 min, which is not clinically
feasible. A similar calculation for distinguishing fast
from slow twitch muscle using <T,> still requires a total
scan time of 32 min, which is long but more practical.

The dependence of SNR on N is well described by a
straight line on a log-log plot. This result was observed
for both estimation of the weighting of a single compo-
nent in the T, distribution of white matter, and estima-
tion of <T,> for fast twitch muscle. Similar observations
have been made in other studies; Whittall et al. (15)
observed that the ability to resolve T, components using
the method of Backus and Gllbert (22) was characterized

by
SNR-NV2 = const, [9]

when T, decay data samples are acquired at logarithmic
time intervals. For white matter, the fitted exponent of N
(Fig. 5) shows a similar dependence (b = 0.56 * 0.04),
whereas for fast twitch muscle (Fig. 7), the exponent is
somewhat higher (b = 0.65 + 0.09). When experimental
error is considered, however, the fitted exponents for
white matter and fast twitch muscle are not significantly
different, and a slightly larger value than b = 0.5 may
reflect the difference between logarithmic data sampling
versus linear data sampling used in this study.
Equation [9] can also be used to interpret multicompo-
nent T, relaxation analysis more generally. In Fig. 8,
results of the simulations for white matter and fast twitch
muscle have been replotted with SNR - N*/2 as the ver-
tical axis, and the total sampling interval N - TE as the
horizontal axis. The square root dependence of SNR min-
imum on N, as observed in Figs. 4-7, is therefore re-
moved so that additional features of the data can be
interpreted. All data sets with different N values in Figs.
8a and 8b follow a sharply decreasing trend for increas-
ing total sampling interval (solid line) starting from large
values of SNR - N2, reflecting poor data sampling of the
relaxation components with comparatively large T, val-
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FIG. 8. Data for (a) white matter and (b) fast twitch muscle replot-
ted with SNR - N2 as the vertical axis and N - TE as the horizon-
~ tal axis. Solid and dashed lines indicate trends.

ues, toward a minimum SNR * N2 value of approxi-
mately 2500, which is apparently an intrinsic threshold
for these analyses. Because the specified analysis of fast
twitch muscle requires accurate estimation of a compo-
nent with T, = 115 ms, whereas the component of inter-
est for white matter has T, = 15 ms, the data in Fig. 8b are
shifted to the right when compared to those in Fig. 8a.
For fast twitch muscle, all data sets follow the same
relationship independent of N over the range of total
sampling intervals shown, and optimal results require
only that the total sampling interval be sufficiently large
(i.e., >300 ms) to sample the component with T, = 115
ms adequately. For white matter, SNR - N2 reaches the
minimum value and then increases as resolution of the
component at T, = 15 ms is progressively lost (dashed
lines), such that there is actually a range of acceptable
sampling intervals for each N. As N increases, the range
of acceptable sampling intervals also increases; usage of
a specific TE,p, value becomes less important. For very
large N, any TE value can be chosen as long as the
component at T, = 15 ms is adequately sampled.

The third set of simulations, performed for breast tis-
sue, illustrate how the methodology can be used to vali-
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date and interpret multicomponent T relaxation analy-
sis of in vivo data. For the experimental conditions
actually obtained using volume localization (6), the mean
parameter estimates of the T, distribution for simulated
and measured data agree, suggesting that the SNR and
data sampling obtained with volume localization are suf-
ficient to resolve these three T, components on average.
Variation in parameter estimates is larger for the mea-
sured data, consistent with the wide variation in breast
tissue characteristics typically ‘observed for volunteer
subjects (23), although the variation observed for the
simulated data suggests that increased SNR is required to
measure biological variations in individual T, compo-
nents of breast tissue accurately in vivo.

We are currently undertaking an in vitro study to iden-
tify which features of the breast T, distribution corre-
spond to fibroglandular and adipose tissue, to investigate
how the distribution varies for different fibroglandular
fractions, and to compare the results obtained with those
presented here as well as with those of other investiga-
tors (24). Together with Monte Carlo simulations, in vitro
measurements should provide valuable information for
optimizing measurement of breast T, decay data in vivo
for assessment of risk of breast cancer (6).

Simulations play an important role in assessing the
suitability of different techniques for measuring T, decay
with sufficient data quality and spatial localization in
vivo. For measurement of breast tissue, the data quality
from volume localization represents a marked improve-
ment over that obtained by imaging methods. By com-
parison, Poon et al. were unable to detect significant
differences in the mean T, value of a single, midbreast
slice, for breasts with low and high fractions of fibroglan-
dular tissue (25). Whether volume localization methods
can be extended to other applications of multicomponent
T, relaxation analysis remains a question. The gainin T,
resolution provided by volume localization is achieved
partly at the expense of spatial resolution. For a given
application, the VOI size must provide sufficient local-
ization that the relevant T, components are resolved

‘without significant degradation in data quality. Further

pulse sequences that meet these constraints remain to be
developed for specific clinical applications.

CONCLUSION

Monte Carlo simulations indicate that least squares-
based, rather than constant x*, constraints are preferable
for multicomponent T, relaxation analysis of data with
low SNR typical of in vivo measurements. Current MR
imaging methods are insufficient to estimate accurately
the T, distributions of white matter or slow and fast
twitch muscle on a pixel-by-pixel basis to the tolerances
specified, in sufficiently short scan times. The conditions
of a previous study using volume localization were suf-
ficient, however, to resolve the three T, components of
breast tissue observed. This work provides a general
framework for assessing the quality of T, decay data
necessary for the development of new techniques to mea-
sure multiple T, components accurately in vivo.
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