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A new approach for

video-stream

filtering that makes

use of the features

representing video

content and exploits

the properties of

metric spaces can

help reduce the

filtering receiver’s

computational load.

W
hen information is deliv-

ered by news agencies,

broadcast TV programs,1,2

and even surveillance sys-

tems, users receive a huge amount of data, but

they might be interested in only a limited part

of it. The process of selecting only significant

information is called information filtering.

However, the complexity of the filtering

process is linear with the number of streams,

filters, and features used to represent the video

data. The entire process must occur in real

time, so it’s likely that most of a systems

processing power will be dedicated to filtering.

We propose a new approach to video

filtering that makes use of simple additional

information (that is, indexes) sent with the

video, eliminating the need for users to digest

video that wouldn’t pass the filter anyway.

Our approach requires a metric measure of

similarity between the filter and the video

representative (the feature); this measure is

based on the well-known pivots technique.3,4

Indeed, filtering quality depends on the metric

measure adopted; however, our method is

suited for any metric distance measure in that

it won’t affect filter capabilities but will

significantly improve efficiency by more than

one order of magnitude.

The scenario

Our approach is general and doesn’t de-

pend on a specific format to represent the

video content, but we assume the use of

MPEG-7 to provide a description of the videos.

In particular, we concentrate on the MPEG-7

visual descriptors, which cover basic visual

features, such as color, texture, and shapes.

Each source sends a video stream associated

with an MPEG-7 stream that contains this

video stream’s description. These streams

move through a generic transmission channel

(see Figure 1) to the receiver stations (for

example, set–top–boxes, digital multimedia

recorders, media center PCs, and so on). Each

receiver station has several filters that select

(from all the video streams that arrive to the

station) and deliver to the user only the video

frames considered relevant. Filtering is based

on a comparison between each video frame

with the filters, so that only frames similar to

one of the filters are delivered to the user.

We can consider different description types

of the video content. For example, the de-

scription can be based on the entire video—for

example, on metadata, such as title, author,

and so on—or on the video shots or scenes. It

also can be based on several video representa-

tive frames. We assume that the MPEG-7

stream contains several visual descriptors for

a subset of the video frames. We call these

selected frames (S-frames). For simplicity, our

system selects and analyzes a frame every five

frames, which corresponds in the National TV

Standards Committee television system to a

frame rate of about six frames per second. The

technique is not limited to just this simple

method for the selection of the S-frames. Real

application settings can adopt more semanti-

cally meaningful selection techniques, such as

automatic selection of keyframes representing

video shots or scenes. MPEG-7 visual descrip-

tors—generated by the source station—de-

scribe each frame.

In this scenario, a query filter is an image

whose representation is obtained using the

MPEG-7 descriptors. The filter is compared

with each S-frame using the metric similarity

measure associated with the descriptor. This is

the receiver station’s task, that is, matching

the queries (user submitted images) with the S-

frames of all the streams received. When an S-

frame passes the filter, the user sees all

successive frames until the next S-frame.

To filter the stream, we could use a brute-

force algorithm, which requires comparing all

S-frames with the query filter, but this solution

would overload the receiver station and reduce

the number of channels we are able to filter

simultaneously. We can calculate the total

time spent by the receiver station for the
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similarity evaluation as the number of sources

multiplied by the number of query filters,

multiplied by the number of MPEG-7 descrip-

tors, multiplied by the average similarity

computation time for the descriptors.

For example, using the MPEG-7 XM refer-

ence software5, the average CPU time needed

to evaluate the similarity between two visual

descriptors represented with edge histograms

is about 30 microseconds (ms). We measured

this time on a 2.4-GHz Pentium 4 PC. This

means that if we have 50 sources and 100

query filters, it takes 50 3 100 3 30 ms 5

0.15 seconds only to evaluate the similarity

using the edge histograms’ descriptor of all the

queries against one video frame. This implies

that we cannot evaluate more than 1/0.15 <
6.67 frames per second. This example makes

clear the importance of adopting techniques

to reduce the number of features extracted

during the filter analysis.

To improve the receiver’s filtering capabil-

ities, we can use two approaches:

& at the receiver station, organizing a large

number of filters using a conventional

access structure (such as an M-tree6); or

& at the sender station, precomputing the

similarity between some S-frames to reduce

the number of similarity computations

made at the receiver station between the

query and the S-frame.

The first solution doesn’t require any

further computation at the sender station.

But it involves the implementation of a query

index structure to match S-frames against

several queries. The text retrieval field has

exploited this approach.7 We can extend the

method to our application scenario by using

an access structure for measuring the similarity

between S-frames.6,8,9 This solution’s draw-

back is that it’s only worthwhile when the

number of queries is large. With the second

solution, we exploit the computational power

of the sender station. We achieve this by

adding some precomputed similarity informa-

tion to the MPEG-7 stream to increase the

receiver station’s performance. The overhead

for generating this precomputed information

is minimal because its computation is negligi-

ble compared with that for the MPEG-7 stream

production.

The objective of our research is to analyze

the performance behavior of this second

approach, which, to the best of our knowl-

edge, has never been explored.

Metric spaces and pivot filtering

A convenient way to assess the similarity

between two objects is to apply the metric

notion by determining the closeness (the

distance) of the objects.10 Treating data items

as objects of a metric space brings a great

advantage in universality, because many data

types and information-seeking strategies con-

form to the metric point of view. Therefore, an

indexing technique based on metric objects is

extendible in the sense that it can be applied

to many specific search problems.

Metric space

Metric space is a term belonging to math-

ematical set theory. The space is not empty but

is rather a mathematical set of objects, such as
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Figure 1. The scenario.
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a feature set. The only knowledge we start with

is the distance among the space’s objects, which

we view as a measure of the objects’ dissimilar-

ity. For instance, if the distance d(x, y) between

two objects x, y is 0, then the objects are

identical. More formally, a metric space M 5 (D,

d) defined by a domain of objects (features,

points) D and a total (distance) function d. For

any distinct objects x, y, z M D, the distance must

satisfy the following properties

d(x, x)~0 (reflexivity)

d(x, y)w0 (strict positiveness)

d(x, y)~d(y, x) (symmetry)

d(x, z)ƒd(x, y)zd(y, z) (triangle inequality)

The technique we propose in this article to

reduce the cost of the filtering process only

assumes that the features used to represent the

video content, and the corresponding distance

functions, can be represented as a metric space.

Indeed, this is the case with the MPEG-7

descriptors we use.

Pivot-based filtering

The efficiency of the filtering is obtained by

reducing the number of similarity measures

between the query object and the target

objects. The basic idea of the pivot-based

algorithms is to exploit the knowledge of a

set of precomputed distances between one

object of the data set, called a pivot, and all the

objects from the data set. Formally, given a

pivot p, a generic object x, and a query object

q, the triangle inequality corresponds to the

three following statements:

d(x, q)ƒd(x, p)zd(q, p)

d(x, p)ƒd(x, q)zd(q, p)

d(q, p)ƒd(x, q)zd(x, p) ð1Þ

Combining the last two elements of Equa-

tion 1 and applying the symmetry property,

we can define an upper bound dH(x, q) and a

lower bound dL(x, q) for the distance d(x, q),

dL(x, q)~ d(q, p){d(x, p)j jƒd(x, q)

dH (x, q)~d(q, p)zd(x, p)§d(x, q) ð2Þ

We can improve efficiency by not evaluat-

ing the distance between the query and the

object d(x, q), which is on the right side of the

previously mentioned inequalities. Because a

range query requires selecting all objects x

such that d(x, q) # r (where r is the query

range), we can use the lower bound value for

the distance d(x, q) to avoid its evaluation. In

fact, when

dL(x, q) w r

x does not belong to the result set of the query

q. We refer to this check as an exclusion test.

Here, we assume that the distances d(q, p) and

d(x, p) are precomputed.

When this test fails, we can use the upper

bound dH(x, q) to select objects without the

direct evaluation of their distances to the

query. In fact, when

dH(x, q) ƒ r

then x belongs to the result set. We refer to

such a check as an inclusion test.

Figure 2 illustrates the principle of this

pivoting technique in a 2D Euclidian space.

In Figure 2a, we show an example of an

exclusion test. We know the distance between

any object and p. The area shown in blue

represents the region of objects x that don’t

belong to the query result. In Figure 2b, we

show an example of an inclusion test. The

orange circle represents the region of objects

that don’t need to be evaluated and belong to

the result set. More details about the pivoted-

based algorithms are available elsewhere.3,4

Bustos, Navarro, and Chavez systematically

studied selecting pivots,11 and proposed and

tested several strategies. However, these strat-

egies aren’t suitable for data streams (as

needed in our case) but are suited for static

data sets. For this reason, in the next section

we develop an approach for selecting the

pivots specifically designed for metric data

streams.

The pivoted stream

We evaluate each MPEG-7 stream at the

source station and extract nd visual descriptors

from each S-frame to represent the frame’s

content. The functions Di and di normally

support a generic descriptor i. The former

extracts the feature from the image, and the

latter evaluates the distance (or dissimilarity)

between the two images’ features. For in-

stance, given two images x and y, we can

evaluate the distance by applying di on the

corresponding features di(Di(x), Di(y)). For
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simplicity, we use the notation di(x, y) to

indicate the distance between the features

extracted by descriptor Di. Similarly, we ana-

lyze each query filter and extract nd visual

descriptors.

We compare all S-frames with all query

filters through the visual descriptors and the

distance functions di, and use the symbols f

and q to indicate a video stream S-frame and

the query filter image, respectively. The user

only sees S-frames whose distance to the query

filter is lower than a certain bound r, that is

di(f, q) , r. We call this a range query (the

selection of all frames with a distance to the

query lower than r), and use the pivoted

stream technique to execute these queries.

Moreover, we assume that the receiver

station maintains a set of nq filters q1, …, qnq.

The pivoted stream principle elects one S-

frame f as a pivot frame p. At the source

station, the distances between the current

pivot frame p and the successive S-frame f are

precomputed. Figure 3 illustrates this princi-

ple.

These distance measures are attached to

each S-frame f together with their MPEG-7

descriptors. In this way, during the filtering

phase, the receiver can exploit these precom-

puted distances to skip some distance evalua-

tions between the S-frames and the queries.

New pivot frames are introduced in the stream

periodically so that the distance between the
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Figure 2. Example of

an (a) exclusion test

and (b) inclusion test.

Figure 3. Illustration of

the pivoted

stream principle.
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S-frame and the pivot is sufficiently small.

Note that we have nd distinct pivots, one for

each descriptor. To determine if an S-frame

could become the pivot frame pi of the i-th

descriptor, we define nd independent thresh-

olds (s1, …, snd
) for each descriptor. If, for a

given S-frame f, di(p, f ) . si, the frame f is

elected as a new pivot frame p and the

distances of the following S-frames are evalu-

ated with respect to the new pivot frame.

Having nd pivots doesn’t imply a significant

data-transmission overhead. Only the distance

measured between the S-frame and the pivot

gets sent in using this technique. If this

distance is zero, the S-frame is considered a

new pivot. In general, the S-frame can simul-

taneously act as the pivot of many descriptors.

Range queries

Given a data set of metric objects X # D, a

range query retrieves all elements x M X within

a distance r to q that is the set {;x M X|d (q, x) #

r}. We assume that search radius ri is associated

with each descriptor i, but we can evaluate the

choice of ri by experimenting with different

possibilities in the real application and assess-

ing user satisfaction. Figure 4 shows the algo-

rithm for similarity range queries. During a

generic time interval, the receiver station

filters the source stream and produces the

result sets Ri,j (for each descriptor di and query

qj) formally defined as Ri, j 5 {;freceived|di (f, qi)

# ri}. The algorithm’s principle is straightfor-

ward. First it checks the two pivot tests

explained in the previous section. If both of

them fail, we must evaluate the distance di(qj,

f ) directly, to verify if it’s smaller than ri. In

this case, we add f to the set Ri,j, which

contains the range query result set for the

descriptor i and query qj. The choice of the

threshold si affects the method’s efficiency. If

si is too small, many S-frames become pivot

frames. If si it too large, we might suffer strong

performance degradation.

Combining descriptors

The technique described so far is based on

the use of a single visual descriptor at a time.

However, to improve the filter’s effectiveness,

we can combine several visual descriptors.

Using several visual descriptors improves the

similarity measure’s quality. For instance, a

comparison of two images according to their

color distribution and their objects’ shape

could provide more effective results than the

use of a single descriptor.

Although we can use several types of feature

combinations, we use a linear combination

that is based on the Milos system and provides

good retrieval effectiveness.12

Given a query q, and an S-frame f, we define

the new combined distance d as

d(f,q)~w1d1(f,q)z . . . zwnd
dnd

(f,q)

~
Xnd

i~1

widi(f,q) ð3Þ

where wi is the weight assigned to visual

descriptor i. Note that the new distance d is still

metric. In general, we can prove that a linear

combination of metric functions di is metric.

We can compute the combined distance d

(in Equation 3) by applying the algorithm

described in the previous section to all visual

descriptors. However, we can obtain an effi-

ciency improvement if we use precomputed

distances to obtain two bounds of the metric

distance for combined descriptors. The tech-

nique requires the computation of both

bounds dL(f, q) and dH(f, q) incrementally,

separately adding each descriptor’s contribu-

tion as follows:

dL(f, q)~
Xnd

i~1

wid
L
i (f, q),

dH (f, q)~
Xnd

i~1

wid
H
i (f, q)

During the evaluation we can exploit the dL

partial sum by testing if it’s greater than the

radius r. If the test is successful, we can avoid
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algorithm for range

queries.
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the complete evaluation of dL because, in this

case, we are sure that the query doesn’t belong

to the result set.

Because the order in which the algorithm

considers various descriptors when evaluating

dL is important, we dynamically adapt the

algorithm by attempting to evaluate first the

descriptors that produce greater values of the

term , increasing the probability that dL . r

before the end of the loop. Basically we swap

the last two descriptors’ evaluation order if the

first one produces a small contribution.

As soon as we evaluate dL and dH, and if both

inclusion and exclusion tests fail, the algorithm

can take advantage of the computation already

performed. It proceeds by substituting the

terms widi
L(f, q) and widi

H(f, q) of the two

summations dL and dH with widi(f, q), which

are the weighted distances between the current

query and the frame f. The algorithm obtains

this by iterating again over the descriptors.

During the iteration we get increasingly precise

values of the bounds. The aim is to terminate

the algorithm before the complete evaluation

of the real combined distance, that is, dL ; dH ;
d(f, q). Again, we try to keep the best order in

the descriptor evaluation.

Performance evaluations

In the performance evaluation we aimed to

determine efficiency improvements gained

when using pivot filtering. We performed the

evaluation using four video sequences of the

TREC Video Retrieval Evaluation 2005 work-

shop’s evaluation set (see Table 1 and http://

www-nlpir.nist.gov/projects/trecvid/), with a

total duration of about two hours. We use

frame filters taken from the stream itself,

which lets us test the worst-case performance

because the probability that the pivot test will

fail is higher for queries closer to the S-frames.

In the experiments, we used four queries

that represent specific aspects of the video

stream, namely

& a frame taken from a specific commercial

(the commercial query),

& the beginning of the news (the news

query),

& a frame taken from a basketball game (the

basket query), and

& a frame taken from a weather forecast (the

weather query).

We tested three MPEG-7 visual descriptors:

scalable color, color structure, and edge histo-

grams. We used the MPEG-7 XM reference

software for their extraction. We based the

similarity computation on the distance mea-

sures proposed in the XM reference software’s

MPEG group. The descriptors are vectors and

their distances are metric. We used the

following parameters for each descriptor:

scalable color used 64 coefficients with 0

bitplanes discarded, color structure used 64

coefficients, and edge histograms with 80

coefficients and no parameters.

The system filters the S-frames using range

queries and selects all S-frames whose distance

from the query filter is lower than a certain

value r. The brute force algorithm requires the

comparison of all S-frames with the query

filter. Pivot use can reduce the total number of

distance computations. This number is equal

to the number of similarity measures comput-

ed between the filters and the pivots plus the

number of similarity measures between the

filters and the S-frames, if the pivot test fails.

All the experiments measure the percentage of

distance similarity computations needed,

when using the pivot method, with respect

to the number of distance computations

required when using the brute force algo-

rithm. Within a given period of time, we

denote the distance computation cost as

ri,j~
ni,j

nf
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Table 1. Video sequences in the TREC Video Retrieval Evaluation 2005 evaluation set used in

our experimentation.

Sequence number Sequence name

1 20041106_110000_MSNBC_MSNBCNEWS11_ENG

2 20041115_133000_MSNBC_MSNBCNEWS13_ENG

3 20041118_183000_NBC_NIGHTLYNEWS_ENG

4 20041118_230000_NBC_NBCPHILA23_ENG
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where ni,j is the number of distance computa-

tions for descriptor di and a given query qj, and

nf is the number of selected frames (0 , ri,j #

1). The objective is to obtain a value of r as

small as possible (R0), if we want to minimize

the number of distance computations.

In general, the total number of distance

similarities we evaluate depends on the query

range ri and the threshold si that the server

uses to choose the pivot frames. The evalua-

tion reported next analyzes performance r

improvement obtained using the pivot meth-

od and varying these two parameters.

Performance sensitivity with respect to

the threshold

In Figure 5, we report r as function of the

threshold si for the scalable color descriptor

and for different query ranges. The dotted line

in the figure shows the percentage of distance

computations caused only by pivot evalua-

tions. This curve represents a lower bound of

computation for the pivoted stream algorithm

because the distance between the pivots and

the query must always be calculated. Obvious-

ly, when the threshold value increases, this

contribution decreases, because pivot frequen-

cy diminishes.

The four solid lines in Figure 5 represent

the computation cost for distinct range queries

as function of the threshold. In general, for a

range query with r . 0, the number of distance

evaluations decreases with the threshold until

a certain point, after which the number grows

again. This behavior occurs because, when the

threshold is small, the number of distances is

dominated by the distance evaluation d(p, q)

between the pivot and the query. As the

threshold grows, the pivoted stream algorithm

works progressively better. After a certain point,

the number of pivot faults increases and the

total number of distance computations grows.

In other words, for a given search radius, there

is a threshold for which the number of distance

evaluations is lower. In Figure 6, we represent

the following three curves:

& the best threshold value for each query

range,

& a fixed threshold value equal to 250

(approximate average over the different

optimal values), and

& the percentage of the qualifying S-frames.

The first curve provides an indication of

performance variability with respect to thresh-

old choice. The most significant and frequent-

ly used range values are the intermediate ones,

between 100 and 400, because they return a

reasonable number of results. For these values,

the differences between the first two curves

aren’t significant, which means that the

optimal choice of the threshold value is not

critical. In general, the performance improve-

ments are higher for lower query ranges.

In Figure 7, we show a synthetic view of

performance improvement for the four test

queries using the three feature descriptors for

range queries. We use the following thresh-

olds: 250 for scalable color, three for color

structure, and 9.60 for edge histograms. Using

these thresholds, 7 percent of the S-frames

become pivots. We chose the thresholds as

averages over the different optimal values, and

we used a radius of 200 for scalable color, three

for color structure, and five for edge histo-

grams. This experimental result shows that the

pivoted stream method gives significant per-

formance improvements for all different que-

ries and for all feature descriptors, with the

edge histogram descriptor that gives the worst

results for all four queries. We chose the radii

of the range queries so that the number of

results was on the order of tens. Only the

commercial query for the edge histogram

descriptor gives many more matches (several

hundreds) due to the high color similarity
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Figure 5. Distance

computation cost r

versus the threshold s

for the commercial

query. We use scalable

color and show graphs

at different query

ranges and when we

only use the pivots.
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between different S-frames of this particular

commercial.

Linear combination of descriptors

In the last set of experiments, we study

system performance when we linearly com-

bine the three visual descriptors (scalable

color, color structure, and edge histograms).

For convenience, we chose the weights wi as

the inverse of the radii of the range queries

experiments. Consequently, assuming r 5 3

for a combined range query, the number of

results is the same order of magnitude as for

the single descriptors. In particular, in our

experiments we have chosen r so that if a

frame f passes all three single descriptor filters,

it also passes the combined descriptor filter.

On the contrary, if the frame f passed the

combined descriptor filter, it passes at least

one of the single descriptor filters.

Figure 7 shows the global result of the

query with combined descriptors for range

queries. In this case, the cost represents the

distance computation cost averaged over all

the descriptors. In all the experiments, the

advantage of the pivots is evident: r ranges

from 2.62 percent of news to 4.46 percent of

commercial. The number of results for the

range queries is 14 for commercial, eight for

news, 25 for basket, and 114 for weather.

Performance estimation

This section provides more general evi-

dence of our approach’s efficiency by devel-

oping a statistical estimation of the computa-

tional cost r. We must note that the pivoted

filtering performance depends on data set

characteristics and query choice. Therefore,

in principle, it’s not possible to give a full

theoretical estimation of performance gains.

However, with a certain data set as a given (the
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Figure 6. Distance

computation cost r for

different queries versus

the query range using

the scalable

color descriptor:

(a) commercial,

(b) news, (c) basket,

and (d) weather.

Figure 7. Distance

computation cost r for

different range queries

and three different

image descriptors

combined.
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video stream), we try to predict performance

with the upper bound computational cost r

independent from the query. If we take the

queries from the data set, the performance

tends to decrease because the number of

results is significant and the probability that

the pivots will fail is high. For this reason, we

estimate the distribution of the distances dL(f,

q) and dH(f, q) by considering a certain number

of S-frames, say q̃1 … q̃m, of the stream as

queries. The greater the value of m, the more

precise the distribution’s evaluation. We eval-

uate the mean d̃i and the standard deviation s̃i

of the distance of the i-th query q̃i from all the

data set’s pivot frames (for a given threshold)—

that is,

~ddi~Ef fd(~qqi, p)g

~ss2
i ~Ef fd(~qqi, p)2g{~dd2

i

Then we evaluate the corresponding mean val-

ues (m̃qp And s̃qp) over the entire set of m queries:

~mmqp~Eif~ddig

~ssqp~Eif~ssig

Assuming that the distance of queries and

pivots from the other S-frames are statistically

independent random variables (which is fairly true

if the subset of queries and pivots are disjointed),

and according to Equation 2, we obtain:

mL~~mmqp{mfp

mH~~mmqpzmfp

s2
L~s2

H~~ss2
qp

zs2
f p

where mf p and sf p denote the mean and the

standard deviation for the distances between the

frames and pivots. To determine the number of

distance evaluations, we approximate the distri-

bution of the distances dL(f, q) and dH(f, q) with

normally distributed functions. This assumption

is quite realistic (see Figure 8a).

Given a certain search radius r, the compu-

tation cost r can be finally evaluated by

calculating the probability that dL(f, q) . r

and that dH(f, q) # r. Figure 8b shows this

estimation’s result compared with the four

queries of the previous experimentations for

several random queries m 5 100. In the worst

case, We can use this estimate to predict

system performance for a given threshold.

Exploiting multiple pivots
This section describes how we extend the

pivoted stream technique by using multiple

pivots. The idea is straightforward: we send

along with the video stream the precomputed

distance between the last k pivot frames and the

current S-frames. The case k 5 1 corresponds to

the single pivot discussed so far in this article.

From the receiver station’s perspective, this

certainly means less distance computations.

However, the sending station must evaluate

several distances among the S-frames and the k

pivot frames. Most of the computational effort

for the sending station is due to the extraction

of the visual descriptors, which is, in some

cases, even three orders of magnitude higher

than the distance computation cost.

Figure 9 shows the r costs when using

multiple pivots. For short-range radii, the advan-

tage is significant; as the search radius becomes

larger, the advantage of using multiple pivots

becomes negligible. Nevertheless, in the case r 5

120, the percentage of results is 0.04 percent,

which means that for a transmission of one hour

and selecting six frames per second, we take on

average 6 3 60 3 60 3 0.0004 < 8.6 results,

which is quite reasonable for a real TV applica-

tion. In this case, we have r 5 6.39 percent with

one pivot, r5 1.88 percent with eight pivots, r5

60

Figure 8. (a)

Estimation of the dL(f,

q) distribution for the

commercial query with

a normal distribution.

(b) Comparison of

estimation of the

distance computation

cost r with the four

queries for different

range queries, using

the scalable

color descriptor.
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1.25 percent with 16 pivots, and r 5 1.04 percent

with 32 pivots. The case with 32 pivots exhibits a

performance gain of about six times the single

pivot case; these performance figures can justify

the use of multiple pivots.

Conclusion

There are many possible applications in

which the pivoted stream technique could be

useful. For example, this method could help

generate statistics to compute how many

times commercials are transmitted or to select

a television program’s start time to begin

recording it. Another possible use is in prop-

erty rights protection for videos or images

distributed by news agencies, such as Reuters.

These agencies have special agreements for use

of material they sell to TV broadcasters. A

filtering application such as the one proposed

in this article could help news agencies

discover illegal use of this material. In addition

to applications in television environment,

other applications include earth satellite sur-

veillance, police surveillance, and so on.

We think that our proposed approach opens

many possible future lines of investigation and

we intend to explore the use of other features,

such as text (optical character recognition

captions, subtitles, and so on) and audio

descriptors. In addition, we can study further

performance improvements if the number of

query filters is large. In these cases, it would

possible to organize the query filters using a

specific access structure for metric spaces. MM
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