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Abstract

Cost assessment related to age of multiple components is discussed. We use definitions of
equivalent ages in multi-dimensional life to illustrate how cost characteristics should be fairly
assessed. Pricing of used items with residual value and assigning warranty for used items as
a function of item’s age are the subjects of our study. Numeric examples based on correlated
Bivariate normal distribution for two life components illustrate our concepts.

1 Introduction

Warranty studies are based on mathematical models of reliability and operating maintenance processes
supposedly built close to assumed warranty policies. Background and discussions of various aspects of
warranty policies and related issues can be found in Blischke and Murthy 1992, 1996. Any contemporary
article on warranty usually contains a good motivation and a survey of recent publications (e.g. Chen
and Popova 2002). An excellent summary of warranty economic decision models can be read in Thomas
and Rao, 1999.

The multi dimensional warranty is rarely considered, although it is also one of the most offered in the
automotive business. Warranty is offered for cars at the purchase and is valid during some limited future
time of use, or until some future mileage is driven, whichever comes first. The client can purchase such
warranty even though the purchased car is used. Active studies on models for two-dimensional warranty
have been actively studied by Mitra and Patankar 2001,2006, Murthy et al. 1995, and others. Models of
higher dimension than two (to best of our knowledge), are not discussed in articles on warranty.

Our talk is focused on cases of two life components. We use an interpretation of age in multi dimen-
sional life (Dimitrov 2007). It allows applications in pricing, and in assigning warranty. The approach can
be used in higher dimensional age. It allows a quick estimate of loses in the most conservative warranty
expenses associated with used items. Examples with Bivariate Normal distribution illustrate the work of
this approach.

2 Multi component life

The “life time” of almost any system might be measured in more than one time scale. Life is presented
not just in terms of the system’ calendar time of existence (since it has been put in operation) but
also with certain additional measurements such as amount of work performed, internal resources wasted,
growth, accumulated depreciation, energy exhausted, weariness, and other similar indicators. For the
age assessment of airplanes there are at least three “life components” of interest, the calendar age, the
amount of time flown (in the air) and the number of takeoffs and landings. These life components usually
represent various resource variables related to the system and are positively dependent. At the time of
death every one of these life variables X,Y, and more, have some measured values. The death itself is
an event indirectly related to the sense of X,Y, . . . i.e. not all of these variables may have a direct “time
meaning”. Usually, the calendar time at death is counted as age of the item. However, age is a relative
concept and needs to be specifically treated. We use this concept (Dimitrov 2007), and discuss it in multi
dimensional life. We confine our attention to systems with two life components (X,Y ). The probability
P (X ≤ x, Y ≤ y) is their joint cumulative distribution function (c.d.f.) FX,Y (x, y). Its value indicates
the proportion of individual systems from the population which will have X ≤ x and Y ≤ y when the
system dies.



The probability to survive both values (x, y), defines the Survival Function SX,Y (x, y) of the system.
It indicates the proportion of individual systems from the population which will have both values X > x
and Y > y when die. The variables X and Y may be treated as two dimensional age, or can be just
collaterals to the age. Their measurements give important information for users close to the ways in
which calendar time is used in the risk assessment, and utility.
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Notice, that we now have sets of equivalently aged individuals from any two populations. Moreover,
within one population the coordinates of the points on the curves

Cp : = {(xp, yp); FX,Y (xp, yp) = p, p ∈ (0, 1)} (1)

are tracing individuals of the same age. The sets Cp represent the curves of equivalent ages for the
individuals in this population at level p. Individuals whose life components X and Y have measurements
located on lower level curves are younger than individuals with measurements on higher level curves.

Definition 2. Pessimistic) Individuals 1 and 2 with two component lives (X1, Y1) = (T (1)
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We have sets of equivalent ages again, even in the frames of one population. The points on the curve

Gp : = {(xp, yp); SX,Y (xp, yp) = p, p ∈ (0, 1)} (2)

trace the individuals of equivalent ages from this population at survival level p. The individuals whose
measured life components are on higher survival level curves are younger than individual with life com-
ponent measurements on lower level curves of the survival function.

Example 1. We illustrate our considerations on a population with two component life with correlated
Bivariate Normal distribution
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for −∞ < x < ∞, and −∞ < y < ∞. Here µ1, µ2 are arbitrary, σ1 > 0, σ2 > 0, and −1 < ρ < 1 are
the five parameters of this distribution (expected values, standard deviations and correlation coefficient
between the two random components X and Y ). By altering these parameters one can model lots of
practical dependence between two normally distributed life components.

3 Fair Pricing of Used Items

Fair pricing of used items with residual value should follow the rules of the rebate warranty. If the original
price of an item is K0 and it is sold used with values on the curve of equivalent ages Cp, then it fair price
needs not to exceed K0(1 − p) - the pessimistic value. Therefore all items with life components laying
on one and the same curve of equivalent ages must be the same. Discount factors proportional to the
time elapsed since the first purchases are also possible. There are possibilities to make adjustments by
giving weights on the particular components (x0, y0) accumulated by the used item during its history of
usage. A combination between the two definitions of the age on the curve Cp, wherep = F (x0, y0), or
on the curve q = S(x0, y0) also shows that if the used item happens on the age curve G1−q, its price
should be no less than K0(1− q) - the “optimistic value”. Salvation value potentially makes the portion
1 − q from the value of a new item. The two values of the functions 1 − F (x0, y0) and S(x0, y0) serve
as estimators of the portion of average resource left in an individual with measured accumulated levels
of its life components. Therefore, the fair pricing should be made by numbers between these two values.
We illustrate this using an example with used cars.



Example 2. Assume X = 57 (thousand miles) is the mileage of a car, and Y = 3.5 years is its calendar
age. We assume the age (X,Y ) has the distribution of Example 1 with parameters µ1 = 220 thousands
miles, µ2 = 12 years, σ1 = 65 thousand miles, σ2 = 4 years, and correlation between the two measurements
ρ = .75. The calculations based on Bivariate normal distribution with the above parameters show that this
vehicle stays the curve C.003009, and on the survivors curve G.98014. At age (220,12) (where the average
age should be) the vehicles will be staying on the level curves C.384973, and G.384973. A new vehicle
priced $20,000 at age (220,12) should be sold for a price between $7,699 and $12,300. A used item of
age (57,3.5) and price as new $20,000, should have fair price (without discounts and other depreciations)
between $19,602 and $19,939.

Kelly’s Blue Book gives free web based advises about the fair prices of new and used cars at
http://www.kbb.com/kbb/UsedCars/default.aspx for almost any brand of cars. After answering a series
of questions one can get advice regarding what value should spark his/her personal interest. The most
of the question are about extras, the car condition (excellent, good, fair) region where you live, and an
ultimate price depending on the answers is given. Our discussion here insists that fair prices are advising
values, and can be used in various fields where used items are the subject of a bargain, when age admits
multi component interpretation.

4 Warranty for used items

Multi dimensional warranty policies allow more options than the one-variable case. Under these policies
the customer is refunded portion of the sales price or the losses incurred because of the items failure. The
warranty is offered in the forms of “boxed values” guaranteed on each age component to be performed
by the item (usually, by the phrase “which ever is fulfilled first”). The policy of Chen and Popova, 2008
combines most models. There are two pairs of numbers (VX , VY ) and (WX ,WY ), where 0 ≤ VX ≤ WX ,
and 0 ≤ VY ≤ WY . If the system fails with age (X,Y ) ∈ [0, VX ]× [0, VY ] (denote this set by A), then it
is replaced by a new one. Denote by B = [0,WX ] × [0,WY ] the set of continued warranty. It contains
set A. If the system fails with age belonging to the set B but outside A, then just a minimal repair
will be funded. Difficulties in multi dimensional case come because authors are trying to use models for
failure rates for the system. And it is known that failure rates are not uniquely defined, thus too many
compromises are admitted.

We advise the use of joint distribution - the c.d.f.’s or the survival functions, and the concept of
equivalent life. It is appropriate for warranty of non-repairable items, but may serve as advising tool
in case of repairable items and costs depending of age components measured at the times of failure.
Moreover, our approach works also in case of used items.

Assume, the age of the system at the purchase is given by the pair (X = x0, Y = y0), and life
has the two dimensional p.d.f. f(x, y). Let the conventional “extended warranty” be as offered above,
with an addition WX to the first component, and addition WY to the second component, whichever
comes first. The two pairs of numbers (VX , VY ) and (WX ,WY ) also may play the role as above. In
other words, if the pair (X,Y ) fails in the rectangle R : = [x0, x0 +WX ]× [[y0, y0 +WY ] some expenses
for replacements or repair will be covered by the warrantor. The chance this happens on the area
A = [x0, x0 + VX ] × [y0, y0 + VY ] has probability P (A) =

∫ ∫
A
f(x, y) dxdy, and then the warrantor

will incur losses at certain rate cr. If the failure happens with life components outside the area A
bit still in the area of active warranty R, then there is a chance for it with probability Q(A,R) =∫ ∫

R−A
f(x, y) dxdy, and rate of uncured losses equal to cm . A minimization of the total expected

losses L(VX , VY ) = crP (A) + cmQ(A,R) will then define the best box A within the box R for this
policy. The solution may not be unique in case that A is not an empty set, and does not coincide
with R. Dependent rates on the age cr = cr(x, y) and cm = cm(x, y) also can be considered, and
the total expected losses are given by the sum of the expected losses on two areas of warranty action
L(A,R) =

∫ ∫
A
cr(x, y)f(x, y) dxdy +

∫ ∫
R−A

cm(x, y)f(x, y) dxdy.
By noticing that age indicators X and Y can only increase in time and using the curves of equivalent

ages we see that the expected warranty expenses remain the same when item’ age jumps from the
(pessimistic) curve of the equivalent starting ages

C0 := {(x, y); FX,Y (x, y) = FX,Y (x0, y0)}



on the next level (pessimistic) curve of equivalent ages

CW := {(x, y); FX,Y (x, y) = FX,Y (x0 +WX , y0 +WY )}

If p0 and pW be the levels of the two curves C0 and CW , then p0 < pW is achieved. There are many
rectangular boxed warranty policies which trace a possible passage from given point on the curve C0 to a
point on the curve CV , and then to a point on the curve CW respectively. A true warranty optimization
program should look for the minimum of L(A,R) taken with respect to all admissible points (x, y) on
the curve CV and all admissible points (xW , yW ) on the curve CW , and then on all intermediate values
pV ∈ [p0, pW ]]. Let p∗V , (x∗W , y

∗
W ) , and (x∗V , y

∗
V ) be the arguments at which value the minimum in question

is attained. Then the optimal values of the parameters of this kind of extended warranty are the pairs of
numbers (V ∗X = x∗V − x0, V

∗
Y = y∗V − y0) , and (W ∗X = x∗W − x0,W

∗
Y = y∗W − y0).

There are some peculiarities in this process. First of all, the growth in the values of the life charac-
teristics, measurements (X,Y ), can not be unilateral. It is hard to find items with multi dimensional
life components where growth in one component can be frozen and only increase is in the other. On
the example of cars it is not possible to drive some additional 100 thousand miles for no time. Nor it
is realistic that the purchased vehicle will never be used. Therefore, the optimization we talk above is
actually narrowed to some feasible sets of points. For instance, feasible points on the next level curves
of equivalent ages are only those whose coordinates are grater than the coordinates of the starting point
on the previous level.

The practice may use KF (x0,y0)[F (xW , yW )−FX,Y (x0, y0)] as a natural upper bound of the expected
warranty expenses (here KF (x0,y0) is the price at which the used item is sold), and plan the premiums
accordingly.

Example 3. Assume (X = 57, Y = 3.5) is the two dimensional age of the used car (see Example 2)
sold for $10,000 with an extended warranty for either the next 100 thousand miles or for next 5 years,
which ever comes first. The actual warranty is on certain parts (e.g. lubricated only) in the condition
of prescribed maintenance. For the distribution of (X,Y ) as in Example 2 this vehicle stays the curve
C003009, and should pass on the curve C.104107. The upper limit of the expected warranty expenses by
the above advice is $1,012. If calculations are using the optimistic the survivors’ curves then the item
will pass from C.98014 to C.747105. The upper bound for the expected warranty expenses is $2,331. The
second is larger since it counts losses way outside the warranty box. In fact, the chances to have this
item failing in the warranty box have probability P (A) = .086156. Hence the true expectation for the
warranty expenses is $861.56.

More examples on determination of the warranty boxes under different initial ages, and estimation of
the warranty expenses will be given in the talk.

Similar approach can be extended to higher dimensional life. Also, analogous situations can be
observed on examples with life insurance, medical insurance, and others, as well as in guarantees related
to yearnings from investments, or from multi-component portfolio.

5 Conclusions

Definitions of multi dimensional age can be given using the approaches in age comparison - the joint
distribution or the joint survival function.

Measurements of the age components in used item serve as ground of evaluation of its residual value
and offer a new look at the pricing of used items.

Warranty in multi dimensional age is extended over each component of the age. Use of probability
distributions allows evaluation of expected warranty expenses.
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