Dr. K. G. TeBeest
*****************************************************************
SIMPSON's - 3/8 RULE ALGORITHM (pseudocode)
To approximate the integral of a function f(x) on interval [a,b]
using n subintervals.
INPUT:
f(x) – the function to be integrated
a – lower limit of interval of integration
b – upper limit of interval of integration
n – the number of subintervals to divide interval [a,b]
NOTE: n must be divisible by 3
*****************************************************************
1. enter: f(x), a, b, n
2. set SECTIONS = n/3
set h = (b-a) / n
set APPROX = 0.0
3. Repeat steps (a–e) for i from 1 to SECTIONS:
a. set x0 = a + 3 * (i–1) * h
b. set x1 = x0 + h
c. set x2 = x1 + h
d. set x3 = x2 + h
e. set APPROX = APPROX + f(x0) + 3*f(x1) + 3*f(x2) + f(x3)
4. set INTEGRAL = 3 * h/8 * APPROX
5. print INTEGRAL
COMMENT: Make sure you print the result in floating point (decimal) form;
you may need to use the Maple "evalf" command.