Dr. K. G. TeBeest
*****************************************************************
SIMPSON's - 1/3 RULE ALGORITHM (pseudocode)
To approximate the integral of a function f(x) on interval [a,b]
using n subintervals.
INPUT:
f(x) - the function to be integrated
a - left endpoint of interval
b - right endpoint of interval
n - the number of subintervals to divide interval [a,b]
NOTE: n must be divisible by 2
*****************************************************************
1. enter: f(x), a, b, n
2. set SECTIONS = n/2
set h = (b-a) / n
set APPROX = 0.0
3. Repeat steps (a-d) for i from 1 to SECTIONS:
a. set x0 = a + 2 * (i-1) * h
b. set x1 = x0 + h
c. set x2 = x1 + h
d. set APPROX = APPROX + f(x0) + 4 * f(x1) + f(x2)
4. set INTEGRAL = APPROX * h/3
5. print INTEGRAL
COMMENT: Make sure you print the result in floating point (decimal) form;
you may need to use the Maple "evalf" command.