In a previous assignment, we saw that the equation

$$e^x = 2x^2 \tag{1}$$

has three solutions on the interval $-2 \le x \le 3$.

1. Most equations can be expressed in fixed point form (x = g(x)) in multiple ways. For example, Eq. (1) can be expressed as

$$x = \pm \sqrt{\frac{e^x}{2}}.$$
 (2)

- 2. To approximate the negative root, we must use the negative sign in Eq. (2).
 - (a) Plot functions x and $-\sqrt{e^x/2}$ on a common plot in Maple on the interval $-1 \le x \le 0$. Restrict the vertical range to $-1 \le y \le 0$, make the curves respectively red and blue, give them a thickness of 4 or 5, make the plot size 300×300 pixels, and include the plot option scaling = constrained.
 - (b) Using $x_0 = -1.0$, apply 6 iterations of the fixed point to approximate the root near x = -0.5.
- 3. To approximate the positive roots, we must use the positive sign in Eq. (2).
 - (a) Plot functions x and $\sqrt{e^x/2}$ on a common plot in Maple on the interval $0 \le x \le 4$. Restrict the vertical range to $0 \le y \le 4$, make the curves respectively red and blue, give them a thickness of 4 or 5, make the plot size 300×300 pixels, and include the plot option scaling = constrained.
 - (b) Using $x_0 = 1.5$, apply 10 iterations of the fixed point method to approximate the root near x = 1.5. What happens? Explain why.
 - (c) Using $x_0 = 2.5$, apply 10 iterations of the fixed point method to approximate the root near x = 2.5. What happens? Explain why.
- 4. Eq. (1) can be expressed in another fixed point form by solving for the x in the exponent to obtain

$$x = \ln\left(2x^2\right). \tag{3}$$

- (a) Plot functions x and $\ln(2x^2)$ on a common plot in Maple on the interval $0 \le x \le 4$. Restrict the vertical range to $0 \le y \le 4$, make the curves respectively red and blue, give them a thickness of 4 or 5, make the plot size 300×300 pixels, and include the plot option scaling = constrained.
- (b) Using $x_0 = 1.5$, apply 10 iterations of the fixed point method to approximate the root near x = 1.5. What happens? Explain why.
- (c) Using $x_0 = 2.5$, apply 10 iterations of the fixed point method to approximate the root near x = 2.5. What happens? Explain why.