Newton–Cotes Integration Formulas

The approximation of a proper, definite integral of function f(x) on each section $[x_0, x_d]$ using Newton-Gregory (N-G) polynomials of degree d is given by

$$I_1 = \int_{x_0}^{x_d} f(x) \, dx \approx \frac{d}{c} h \left[a_0 f_0 + a_1 f_1 + \dots + a_d f_d \right] = \frac{d}{c} h \sum_{k=0}^d a_k f_k \,, \tag{1}$$

where d is the degree of interpolating polynomial on each section, h = (b-a)/n is the abscissa spacing, and the other constants used in (1) are given by

d	c	a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	Global Error	D
1	2	1	1							$O(h^2)$	1
2	6	1	4	1						$O(h^4)$	3
3	8	1	3	3	1					$O(h^4)$	3
4	90	7	32	12	32	7				$O(h^6)$	5
5	288	19	75	50	50	75	19			$O(h^6)$	5
6	840	41	216	27	272	27	216	41		$O(h^8)$	7
7	17280	751	3577	1323	2989	2989	1323	3577	751	$O(h^8)$	7

- A dth degree N-G polynomial will integrate all polynomials up to degree D exactly.
 For example, the 4th degree N-G polynomial integrates all polynomials up to degree 5 *exactly*.
- The number of subintervals n dividing interval [a, b] must be divisible by d.
 For example, in the d = 4 case, the number of subintervals n must be divisible by 4.
- Each section comprises *d* successive subintervals.

. . .

For example, in Simpson's-1/3 rule (d = 2) there are n/2 sections:

- Section 1: subintervals 1 & $2 \rightarrow [x_0, x_2]$
- Section 2: subintervals 3 & $4 \rightarrow [x_2, x_4]$
- Section 3: subintervals 5 & $6 \rightarrow [x_4, x_6]$
- Section n/2: subintervals (n-1) & $n \rightarrow [x_{n-2}, x_n]$
- In each formula, the *a* coefficients add to c: $\sum a_k = c$.
- The even degree N-G polynomials are very slightly more accurate than the next higher odd degree formulas. For example, although both have $O(h^4)$ accuracy, Simpson's-1/3 rule (d = 2) is very slightly more accurate than Simpson's-3/8 rule (d = 3).