Newton-Cotes Integration Formulas

The approximation of a proper, definite integral of function $f(x)$ on each section $\left[x_{0}, x_{d}\right]$ using NewtonGregory (N-G) polynomials of degree d is given by

$$
\begin{equation*}
I_{1}=\int_{x_{0}}^{x_{d}} f(x) d x \approx \frac{d}{c} h\left[a_{0} f_{0}+a_{1} f_{1}+\cdots+a_{d} f_{d}\right]=\frac{d}{c} h \sum_{k=0}^{d} a_{k} f_{k} \tag{1}
\end{equation*}
$$

where d is the degree of interpolating polynomial on each section, $h=(b-a) / n$ is the abscissa spacing, and the other constants used in (1) are given by

d	c	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	Global Error	D
1	2	1	1							$O\left(h^{2}\right)$	1
2	6	1	4	1						$O\left(h^{4}\right)$	3
3	8	1	3	3	1					$O\left(h^{4}\right)$	3
4	90	7	32	12	32	7				$O\left(h^{6}\right)$	5
5	288	19	75	50	50	75	19			$O\left(h^{6}\right)$	5
6	840	41	216	27	272	27	216	41		$O\left(h^{8}\right)$	7
7	17280	751	3577	1323	2989	2989	1323	3577	751	$O\left(h^{8}\right)$	7

- A d th degree $\mathrm{N}-\mathrm{G}$ polynomial will integrate all polynomials up to degree D exactly.

For example, the 4th degree N-G polynomial integrates all polynomials up to degree 5 exactly.

- The number of subintervals n dividing interval $[a, b]$ must be divisible by d.

For example, in the $d=4$ case, the number of subintervals n must be divisible by 4 .

- Each section comprises d successive subintervals.

For example, in Simpson's $-1 / 3$ rule $(d=2)$ there are $n / 2$ sections:
Section 1: \quad subintervals $1 \& 2 \rightarrow\left[x_{0}, x_{2}\right]$
Section 2: \quad subintervals $3 \& 4 \rightarrow\left[x_{2}, x_{4}\right]$
Section 3: \quad subintervals $5 \& 6 \rightarrow\left[x_{4}, x_{6}\right]$
Section $n / 2$: \quad subintervals $(n-1) \& n \rightarrow\left[x_{n-2}, x_{n}\right]$

- In each formula, the a coefficients add to $c: ~ \sum a_{k}=c$.
- The even degree N-G polynomials are very slightly more accurate than the next higher odd degree formulas. For example, although both have $O\left(h^{4}\right)$ accuracy, Simpson's $-1 / 3$ rule $(d=2)$ is very slightly more accurate than Simpson's-3/8 rule $(d=3)$.

