MATH-305 Numeric Differentiation

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8
f	1.54308	1.66852	1.81066	1.97091	2.15090	2.35241	2.57746	2.82832	3.10747

See these formulas.

1. Use the above data to approximate $f^{\prime}(1.4)$ using the 3 -point central difference formula with
(a) $h=0.1$
answer: 1.9075
(b) $h=0.2$
answer: 1.9170
(c) Richardson extrapolation
answer: $1.904 \overline{3}$

Use the correction term to estimate the error of (a) in permille.
answer: -1.66%
2. Use the above data to approximate $f^{\prime}(1.4)$ using the 3 -point forward difference formula with
(a) $h=0.1$
answer: 1.8974000
(b) $h=0.2$
answer: 1.8741750
(c) Richardson extrapolation
answer: $1.905141 \overline{6}$
Use the correction term to estimate the error of (a) in percent.
answer: 0.408%
3. Use the above data to approximate $f^{\prime}(1.4)$ using the 5 -point central difference formula with
(a) $h=0.1 \quad$ answer: $1.904 \overline{3}$
(b) $h=0.2 \quad$ answer: $1.9041708 \overline{3}$
(c) Richardson extrapolation
answer: $1.9043441 \overline{6}$
Use the correction term to estimate the error of (a) in parts per million.
answer: 5.689 ppm
4. Use the above data to approximate $f^{\prime \prime}(1.4)$ using the 5 -point central difference formula with
(a) $h=0.1$
answer: 2.15000000
(b) $h=0.2$
answer: $2.1507708 \overline{3}$
(c) Richardson extrapolation
answer: $2.1499486 \overline{1}$

Use the correction term to estimate the error of (a) in permyriad. answer: -0.239% oo
5. Use the above data to approximate $f^{\prime \prime}(1.8)$ using the 5 -point backward difference formula with
(a) $h=0.1$
(b) $h=0.2$
(c) Richardson extrapolation

Use the correction term to estimate the error of (a) in permyriad.
answer: 3.09625000
answer: $3.0940208 \overline{3}$
answer: 3.09656845
answer: 1.0285\%oo

Use Newton-Gregory interpolating polynomials to derive the following 4-point difference formulas for $f^{\prime}\left(x_{0}\right)$ and $f^{\prime}\left(x_{1}\right)$.

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =\frac{-11 f_{0}+18 f_{1}-9 f_{2}+2 f_{3}}{6 h} \\
f^{\prime}\left(x_{1}\right) & =\frac{-2 f_{0}-3 f_{1}+6 f_{2}-f_{3}}{6 h}
\end{aligned}
$$

