A 2 kg mass is attached to a spring with spring constant of $338 \mathrm{~N} / \mathrm{m}$. The surrounding medium offers a resistance numerically equal to 20 times the velocity. Initially the spring is 4 m above the equilibrium position and given a downward velocity of $56 \mathrm{~m} / \mathrm{s}$. Obtain the equation of motion.

Given:

$$
\begin{array}{lll}
m=2 \mathrm{~kg} & k=338 \mathrm{~N} / \mathrm{m} & \beta=20 \\
x(0)=-4 \mathrm{~m} & x^{\prime}(0)=+56 \mathrm{~m} / \mathrm{s} &
\end{array}
$$

The ODE (governing equation) is then

$$
\begin{equation*}
m x^{\prime \prime}+\beta x^{\prime}+k x=0 \quad \Longrightarrow \quad 2 x^{\prime \prime}+20 x^{\prime}+338 x=0 \tag{1}
\end{equation*}
$$

The characteristic equation (after dividing by 2)

$$
m^{2}+10 m+169=0
$$

has roots

$$
m_{1,2}=-5 \pm 12 i
$$

Since the roots are complex, the general solution of this homogeneous ODE is underdamped:

$$
\begin{equation*}
x(t)=e^{-5 t}\left(c_{1} \cos 12 t+c_{2} \sin 12 t\right) \tag{2}
\end{equation*}
$$

So

$$
\begin{equation*}
x^{\prime}(t)=-5 e^{-5 t}\left(c_{1} \cos 12 t+c_{2} \sin 12 t\right)+e^{-5 t}\left(-12 c_{1} \sin 12 t+12 c_{2} \cos 12 t\right) \tag{3}
\end{equation*}
$$

Initial Conditions: From equations (2) and (3) we obtain

$$
\begin{align*}
x(0) & =e^{0}\left(c_{1} \cos 0+c_{2} \sin 0\right) \\
-4 & =c_{1} \tag{4}\\
x^{\prime}(0) & =-5 e^{0}\left(c_{1} \cos 0+c_{2} \sin 0\right)+e^{0}\left(-12 c_{1} \sin 0+12 c_{2} \cos 0\right), \\
+56 & =-5 c_{1}+12 c_{2} . \tag{5}
\end{align*}
$$

We solve equations (4) and (5) for c_{1} and c_{2} to obtain $c_{1}=-4$ and $c_{2}=3$. So the equation of motion is

$$
\begin{equation*}
x(t)=e^{-5 t}(-4 \cos 12 t+3 \sin 12 t) \tag{6}
\end{equation*}
$$

NOTE: The period is the time it takes to complete one cycle (vibration, oscillation):

$$
T=\frac{2 \pi}{12}=\frac{\pi}{6} \text { seconds/cycle, } \quad \text { (takes } \pi / 6 \text { seconds to complete each cycle) }
$$

The frequency is number of cycles completed every second:

$$
\left.f=\frac{1}{T}=\frac{6}{\pi} \text { cycles } / \text { sec }, \quad \quad \text { (completes } 6 / \pi \text { cycles per second }\right)
$$

Also, we calculate A (note: A is no longer the amplitude):

$$
A=\sqrt{c_{1}^{2}+c_{2}^{2}}=\sqrt{(-4)^{2}+(3)^{2}}=5 \mathrm{~m}
$$

so the damped amplitude is

$$
A e^{-5 t}=5 e^{-5 t} \mathrm{~m}
$$

