A circuit comprises a 1 henry inductor and a 0.25 farad capacitor. There is no resistor. Initially q(0)=0 and i(0)=0, but there is an impressed voltage of $E(t)=24\sin 4t$. Obtain the charge q(t).

Given:

$$L=1$$
 h, $R=0\,\Omega,$ $C=0.25$ f, $q(0)=0,$ $q'(0)=i(0)=0.$

The nonhomogeneous ODE (governing equation) is then

$$Lq'' + Rq' + \frac{1}{C}q = E(t) \implies q'' + 4q = 24\sin 4t.$$
 (1)

STEP 1: COMPLEMENTARY SOLUTION

The characteristic equation

$$m^2 + 4 = 0$$

has roots

$$m_{1,2} = \pm 2i$$
.

So the complementary solution is (see Sec. 5.1.1)

$$q_c(t) = c_1 \cos 2t + c_2 \sin 2t. (2)$$

STEP 2: PARTICULAR SOLUTION

Now we seek a particular solution of (1). We'll use undetermined coefficients:

Input Function:		Terms
$E = 24\sin 4t$		$\sin 4t$
$E' = 96\cos 4t$		$\cos 4t$
$E'' = -284\sin 4t$		$\sin 4t$
	List:	$\cos 4t, \sin 4t$

Q: Do any terms in the List already appear in x_c ?

 \mathcal{A} : No, so we need not modify the List.

So we seek a particular solution of (1) that is a linear combination of terms in the List:

$$q_p = a\cos 4t + b\sin 4t. (3)$$

We substitute q_p into (1) and collect like terms to obtain

$$-12a \cos 4t + -12b \sin 4t \equiv 24 \sin 4t$$
.

Equate like terms:

$$\cos 4t$$
: $-12a \equiv 0 \implies a = 0$
 $\sin 4t$: $-12b \equiv 24 \implies b = -2$

Prof. Kevin G. TeBeest © 2001-18

Kettering University

file: rlc3.tex

03/05/2018

So by (3), a particular solution of (1) is

$$q_p(t) = -2\sin 4t. (4)$$

STEP 3: GENERAL SOLUTION

Then the general solution of the nonhomogeneous problem (1) is

$$q(t) = q_c + q_p = c_1 \cos 2t + c_2 \sin 2t - 2 \sin 4t.$$
 (5)

and

$$q'(t) = -2c_1 \sin 2t + 2c_2 \cos 2t - 8\cos 4t \tag{6}$$

STEP 4: APPLY INITIAL CONDITIONS:

From equations (5) and (6) we obtain

$$q(0) = c_1 \equiv 0, \tag{7}$$

$$q'(0) = 2c_2 - 8 \equiv 0 \implies c_2 = 4.$$
 (8)

So by (5), the solution is

charge:
$$q(t) = 4 \sin 2t - 2 \sin 4t$$
, (9)
current: $i(t) \equiv q'(t) = 8 \cos 2t - 8 \cos 4t$.

NOTES & NEW CONCEPTS:

1. In this example, the complementary solution $q_c(t) = c_1 \cos 2t + c_2 \sin 2t$ represents simple harmonic motion, (i.e., constant amplitude oscillation) with natural frequency

$$f \; = \; rac{2}{2\pi} \; = \; rac{1}{\pi} \; \; {
m Hz} \, .$$

2. In this example, the particular solution $q_p(t) = -2\sin 4t$ also represents simple harmonic motion, (i.e., constant amplitude oscillation) with frequency

$$f = \frac{4}{2\pi} = \frac{2}{\pi} \text{ Hz}.$$

Note also that the frequency of the particular solution IS the frequency of the voltage E(t).

3. This problem is exactly Example 6 that was handed out in Section 5.1.3.