A 2 kg mass is attached to a spring with spring constant of $8 \mathrm{~N} / \mathrm{m}$. The spring is initially 3 m above equilibrium and given an upward velocity of $8 \mathrm{~m} / \mathrm{s}$. Obtain the equation of motion.

Given:

$$
\begin{array}{lll}
m=2 \mathrm{~kg}, & k=8 \mathrm{~N} / \mathrm{m}, & \beta=0, \\
x(0)=-3 \mathrm{~m}, & x^{\prime}(0)=-8 \mathrm{~m} / \mathrm{s} . &
\end{array}
$$

The ODE (governing equation) is then

$$
\begin{equation*}
m x^{\prime \prime}+\beta x^{\prime}+k x=0 \quad \Longrightarrow \quad 2 x^{\prime \prime}+8 x=0 . \tag{1}
\end{equation*}
$$

The characteristic equation

$$
m^{2}+4=0
$$

has roots

$$
m_{1,2}= \pm 2 i .
$$

Since the roots are complex, the general solution of this homogeneous ODE is simple harmonic:

$$
\begin{equation*}
x(t)=c_{1} \cos 2 t+c_{2} \sin 2 t \tag{2}
\end{equation*}
$$

So

$$
\begin{equation*}
x^{\prime}(t)=-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t . \tag{3}
\end{equation*}
$$

Initial Conditions:

From equations (2) and (3) we obtain

$$
\begin{align*}
x(0) & =c_{1} \cos 0+c_{2} \sin 0, \\
-3 & =c_{1}, \tag{4}\\
x^{\prime}(0) & =-2 c_{1} \sin 0+2 c_{2} \cos 0, \\
-8 & =2 c_{2} . \tag{5}
\end{align*}
$$

We solve equations (4) and (5) for c_{1} and c_{2} to obtain $c_{1}=-3$ and $c_{2}=-4$. So the solution, now called the equation of motion, is obtained by Eq. (2):

$$
\begin{equation*}
x(t)=-3 \cos 2 t-4 \sin 2 t \tag{6}
\end{equation*}
$$

NOTE: The period is the time it takes to complete one cycle (vibration, oscillation):

$$
T=\frac{2 \pi}{2}=\pi \text { seconds/cycle, } \quad \text { (takes } \pi \text { seconds to complete each cycle) }
$$

The frequency is number of cycles completed every second:

$$
f=\frac{1}{T}=\frac{1}{\pi} \text { cycles } / \mathrm{sec}, \quad \text { (completes } 1 / \pi \text { cycles per second) }
$$

