A 1 kg mass is attached to a spring with spring constant of $4 \mathrm{~N} / \mathrm{m}$. There is no resistance. Initially the spring is at rest at the equilibrium position. The motion is driven by an external driving force of $F(t)=24 \sin 2 t$. Obtain the equation of motion.

Given:

$$
\begin{array}{lll}
m=1 \mathrm{~kg}, & k=4 \mathrm{~N} / \mathrm{m}, & \beta=0, \\
x(0)=0 \mathrm{~m}, & x^{\prime}(0)=0 \mathrm{~m} / \mathrm{s} . &
\end{array}
$$

The ODE (governing equation) is then

$$
\begin{equation*}
m x^{\prime \prime}+\beta x^{\prime}+k x=F(t) \quad \Longrightarrow \quad x^{\prime \prime}+4 x=24 \sin 2 t \tag{1}
\end{equation*}
$$

STEP 1: COMPLEMENTARY SOLUTION

The characteristic equation

$$
m^{2}+4=0
$$

has roots

$$
m_{1,2}= \pm 2 i .
$$

So the complementary solution of Eq. (1) is

$$
\begin{equation*}
x_{c}(t)=c_{1} \cos 2 t+c_{2} \sin 2 t, \tag{2}
\end{equation*}
$$

that is, x_{c} is simple harmonic with frequency $2 / 2 \pi \mathrm{cyc} / \mathrm{sec}$.

STEP 2: PARTICULAR SOLUTION

Now we seek a particular solution of (1). We'll use undetermined coefficients:

Input Function:		Terms
$F=24 \sin 2 t$		$\sin 2 t$
$F^{\prime}=48 \cos 2 t$		$\cos 2 t$
$F^{\prime \prime}=-96 \sin 2 t$		$\sin 2 t$
	List:	$\cos 2 t, \sin 2 t$
	New List:	$t \cos 2 t, t \sin 2 t$

\mathcal{Q} : Do any terms in the List already appear in x_{c} ?
\mathcal{A} : Yes, so we must modify the List.
So we seek a particular solution of (1) that is a linear combination of terms in the New List:

$$
\begin{equation*}
x_{p}=a t \cos 2 t+b t \sin 2 t . \tag{3}
\end{equation*}
$$

We substitute x_{p} into (1) and collect like terms to obtain

$$
4 b \cos 2 t-4 a \sin 2 t \equiv 24 \sin 2 t
$$

Equate like terms:

$$
\begin{aligned}
\cos 4 t: & 4 b \equiv 0 \quad \Longrightarrow b=0 \\
\sin 4 t: & -4 a \equiv 24 \quad \Longrightarrow a=-6
\end{aligned}
$$

So by (3), a particular solution of (1) is

$$
\begin{equation*}
x_{p}(t)=-6 t \cos 2 t . \tag{4}
\end{equation*}
$$

STEP 3: GENERAL SOLUTION

Then the general solution of the nonhomogeneous problem (1) is

$$
\begin{equation*}
x(t)=x_{c}+x_{p}=c_{1} \cos 2 t+c_{2} \sin 2 t-6 t \cos 2 t, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime}(t)=-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t-6 \cos 2 t+12 t \sin 2 t . \tag{6}
\end{equation*}
$$

STEP 4: APPLY INITIAL CONDITIONS:

From equations (5) and (6) we obtain

$$
\begin{align*}
x(0) & =c_{1} \equiv 0, \tag{7}\\
x^{\prime}(0) & =2 c_{2}-6 \equiv 0 \quad \Longrightarrow c_{2}=3 . \tag{8}
\end{align*}
$$

So by (5), the solution (the equation of motion) is

$$
\begin{equation*}
x(t)=3 \sin 2 t-6 t \cos 2 t . \tag{9}
\end{equation*}
$$

NOTES \& NEW CONCEPTS:

1. In this example, the complementary solution

$$
x_{c}(t)=c_{1} \cos 2 t+c_{2} \sin 2 t,
$$

represents simple harmonic motion, (i.e., constant amplitude oscillation), so the natural frequency is

$$
f=\frac{2}{2 \pi}=\frac{1}{\pi} \mathrm{~Hz} .
$$

2. In this example, the particular solution

$$
x_{p}(t)=-6 t \cos 2 t,
$$

represents unbounded oscillation. Notice that its frequency is also

$$
f=\frac{2}{2 \pi}=\frac{1}{\pi} \mathrm{~Hz} .
$$

Note also that the frequency of the particular solution IS the frequency of the driving force $F(t)$.
3. DEFINITION. When the natural frequency and the driving force frequency are equal (and no damping is present), then the solution $x(t)$ will grow without bound. This occurred despite the fact that the driving force $F(t)$ is bounded.
We call this phenomenon pure resonance.

