A 1 kg mass is attached to a spring with spring constant of 4 N/m. There is no resistance. Initially the spring is at rest at the equilibrium position. The motion is driven by an external driving force of $F(t)=24\sin 2t$. Obtain the equation of motion.

Given:

$$m=1$$
 kg,
$$k=4$$
 N/m, $\beta=0$, $x(0)=0$ m,
$$x'(0)=0$$
 m/s.

The ODE (governing equation) is then

$$m x'' + \beta x' + k x = F(t) \qquad \Longrightarrow \qquad x'' + 4 x = 24 \sin 2t. \tag{1}$$

STEP 1: COMPLEMENTARY SOLUTION

The characteristic equation

$$m^2 + 4 = 0$$

has roots

$$m_{1.2} = \pm 2i$$
.

So the complementary solution of Eq. (1) is

$$x_c(t) = c_1 \cos 2t + c_2 \sin 2t \,, \tag{2}$$

that is, x_c is simple harmonic with frequency $2/2\pi$ cyc/sec.

STEP 2: PARTICULAR SOLUTION

Now we seek a particular solution of (1). We'll use **undetermined coefficients:**

Input Function:		Terms
$F = 24\sin 2t$		$\sin 2t$
$F' = 48\cos 2t$		$\cos 2t$
$F'' = -96\sin 2t$		$\sin 2t$
	List:	$\cos 2t, \sin 2t$

New List: $t\cos 2t$, $t\sin 2t$

Q: Do any terms in the List already appear in x_c ?

 \mathcal{A} : Yes, so we must modify the List.

So we seek a particular solution of (1) that is a linear combination of terms in the New List:

$$x_p = at\cos 2t + bt\sin 2t. (3)$$

We substitute x_p into (1) and collect like terms to obtain

$$4b\cos 2t - 4a\sin 2t \equiv 24\sin 2t.$$

Equate like terms:

$$\cos 4t$$
: $4b \equiv 0 \implies b = 0$
 $\sin 4t$: $-4a \equiv 24 \implies a = -6$

Prof. Kevin G. TeBeest © 2001-18

Kettering University

file: force3.tex

03/05/2018

So by (3), a particular solution of (1) is

$$x_p(t) = -6t\cos 2t. (4)$$

STEP 3: GENERAL SOLUTION

Then the general solution of the nonhomogeneous problem (1) is

$$x(t) = x_c + x_p = c_1 \cos 2t + c_2 \sin 2t - 6t \cos 2t, \tag{5}$$

and

$$x'(t) = -2c_1 \sin 2t + 2c_2 \cos 2t - 6\cos 2t + 12t \sin 2t.$$
 (6)

STEP 4: APPLY INITIAL CONDITIONS:

From equations (5) and (6) we obtain

$$x(0) = c_1 \equiv 0, \tag{7}$$

$$x'(0) = 2c_2 - 6 \equiv 0 \implies c_2 = 3.$$
 (8)

So by (5), the solution (the equation of motion) is

$$x(t) = 3\sin 2t - 6t\cos 2t. (9)$$

NOTES & NEW CONCEPTS:

1. In this example, the complementary solution

$$x_c(t) = c_1 \cos 2t + c_2 \sin 2t,$$

represents simple harmonic motion, (i.e., constant amplitude oscillation), so the natural frequency is

$$f = \frac{2}{2\pi} = \frac{1}{\pi} \text{ Hz.}$$

2. In this example, the particular solution

$$x_n(t) = -6t \cos 2t$$

represents unbounded oscillation. Notice that its frequency is also

$$f = \frac{2}{2\pi} = \frac{1}{\pi} \text{ Hz}.$$

Note also that the frequency of the particular solution IS the frequency of the driving force F(t).

3. **DEFINITION.** When the natural frequency and the driving force frequency are equal (and no damping is present), then the solution x(t) will grow without bound. This occurred *despite* the fact that the driving force F(t) is bounded.

We call this phenomenon pure resonance.

Prof. Kevin G. TeBeest © 2001-18

Kettering University

file: force3.tex

03/05/2018