
MATH 204 Example 6: Undamped, Forced Motion Dr. TeBeest

A 1 kg mass is attached to a spring with spring constant of 4 N/m. There is no resistance. Initially the spring
is at rest at the equilibrium position. The motion is driven by an external driving force of F (t) = 24 sin 4t.
Obtain the equation of motion.

Given:

m = 1 kg, k = 4 N/m, β = 0,

x(0) = 0 m, x′(0) = 0 m/s.

The ODE (governing equation) is then

mx′′ + βx′ + k x = F (t) =⇒ x′′ + 4x = 24 sin 4t . (1)

STEP 1: COMPLEMENTARY SOLUTION
The characteristic equation

m2 + 4 = 0

has roots
m1,2 = ±2i .

So the complementary solution of Eq. (1) is

xc(t) = c1 cos 2t+ c2 sin 2t , (2)

that is, xc is simple harmonic with frequency 2/2π cyc/sec.

STEP 2: PARTICULAR SOLUTION
Now we seek a particular solution of (1). We’ll use undetermined coefficients:

Input Function: Terms

F = 24 sin 4t sin 4t
F ′ = 96 cos 4t cos 4t
F ′′ = −284 sin 4t sin 4t

List: cos 4t, sin 4t

Q: Do any terms in the List already appear in xc?
A: No, so we need not modify the List.

So we seek a particular solution of (1) that is a linear combination of terms in the List:

xp = a cos 4t+ b sin 4t . (3)

We substitute xp into (1) and collect like terms to obtain

−12a cos 4t+−12b sin 4t ≡ 24 sin 4t .

Equate like terms:

cos 4t : −12a ≡ 0 =⇒ a = 0

sin 4t : −12b ≡ 24 =⇒ b = −2
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So by (3), a particular solution of (1) is

xp(t) = −2 sin 4t . (4)

STEP 3: GENERAL SOLUTION

Then the general solution of the nonhomogeneous problem (1) is

x(t) = xc + xp

= c1 cos 2t+ c2 sin 2t− 2 sin 4t , (5)

and

x′(t) = −2c1 sin 2t+ 2c2 cos 2t− 8 cos 4t . (6)

STEP 4: APPLY INITIAL CONDITIONS:

From equations (5) and (6) we obtain

x(0) = c1 ≡ 0 , (7)

x′(0) = 2 c2 − 8 ≡ 0 =⇒ c2 = 4 . (8)

So by (5), the solution (the equation of motion) is

x(t) = 4 sin 2t− 2 sin 4t . (9)

NOTES & NEW CONCEPTS:

1. In this example, the complementary solution

xc(t) = c1 cos 2t+ c2 sin 2t ,

represents simple harmonic motion, (i.e., constant amplitude oscillation) with frequency

f =
2

2π
=

1

π
Hz .

2. In this example, the particular solution

xp(t) = −2 sin 4t ,

also represents simple harmonic motion, (i.e., constant amplitude oscillation) with frequency

f =
4

2π
=

2

π
Hz .

Note also that the frequency of the particular solution IS the frequency of the driving force F (t).

3. DEFINITION. When the natural frequency and the driving force frequency are different (and no
damping is present), we call the frequency of the complementary solution the natural frequency.
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