A 2 kg mass is attached to a spring with spring constant of $272 \mathrm{~N} / \mathrm{m}$. The surrounding medium offers a resistance numerically equal to 24 times the velocity. The initially 4 m below the equilibrium position and given a downward velocity of $36 \mathrm{~m} / \mathrm{s}$. The motion is driven by an external driving force of $F(t)=1200 \sin 8 t$. Obtain the equation of motion.

Given:

$$
\begin{array}{lll}
m=2 \mathrm{~kg}, & k=272 \mathrm{~N} / \mathrm{m}, & \beta=24, \\
x(0)=+4 \mathrm{~m}, & x^{\prime}(0)=+36 \mathrm{~m} / \mathrm{s} . &
\end{array}
$$

The ODE (governing equation) is then

$$
\begin{align*}
m x^{\prime \prime}+\beta x^{\prime}+k x=F(t) & \Longrightarrow 2 x^{\prime \prime}+24 x^{\prime}+272 x=1200 \sin 8 t \\
& \Longrightarrow x^{\prime \prime}+12 x^{\prime}+136 x=600 \sin 8 t \tag{1}
\end{align*}
$$

STEP 1: COMPLEMENTARY SOLUTION

The characteristic equation

$$
m^{2}+12 m+136=0
$$

has roots

$$
m_{1,2}=-6 \pm 10 i
$$

Since the roots are complex, the complementary solution of Eq. (1) is underdamped:

$$
\begin{equation*}
x_{c}(t)=e^{-6 t}\left(c_{1} \cos 10 t+c_{2} \sin 10 t\right) . \tag{2}
\end{equation*}
$$

STEP 2: PARTICULAR SOLUTION

Now we seek a particular solution of (1). We'll use undetermined coefficients:

Input Function:	Terms
$f=600 \sin 8 t$	$\sin 8 t$
$f^{\prime}=4800 \cos 8 t$	$\cos 8 t$
$f^{\prime \prime}=38400 \sin 8 t$	$\sin 8 t$

List: $\cos 8 t, \sin 8 t$
\mathcal{Q} : Do any terms in the List already appear in x_{c} ?
\mathcal{A} : No, so we need not modify the List.
So we seek a particular solution of (1) that is a linear combination of terms in the List:

$$
\begin{equation*}
x_{p}=a \cos 8 t+b \sin 8 t \tag{3}
\end{equation*}
$$

We substitute x_{p} into (1) and collect like terms to obtain

$$
(72 a+96 b) \cos 8 t+(-96 a+72 b) \sin 8 t \equiv 600 \sin 8 t
$$

Equate like terms:

$$
\begin{aligned}
\cos 8 t: & 72 a+96 b \equiv 0 \\
\sin 8 t: & -96 a+72 b \equiv 600
\end{aligned}
$$

We solve these to obtain $\quad a=-4 \quad$ and $\quad b=3$.
So by (3), a particular solution of (1) is

$$
\begin{equation*}
x_{p}(t)=-4 \cos 8 t+3 \sin 8 t \tag{4}
\end{equation*}
$$

STEP 3: GENERAL SOLUTION

Then the general solution of the nonhomogeneous problem (1) is

$$
\begin{align*}
x(t) & =x_{c}+x_{p} \\
& =e^{-6 t}\left(c_{1} \cos 10 t+c_{2} \sin 10 t\right)-4 \cos 8 t+3 \sin 8 t \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
x^{\prime}(t)= & -6 e^{-6 t}\left(c_{1} \cos 10 t+c_{2} \sin 10 t\right)+e^{-6 t}\left(-10 c_{1} \sin 10 t+10 c_{2} \cos 10 t\right) \\
& +32 \sin 8 t+24 \cos 8 t . \tag{6}
\end{align*}
$$

STEP 4: APPLY INITIAL CONDITIONS:

The initial conditions were

$$
x(0)=4 \quad \text { and } \quad x^{\prime}(0)=36,
$$

so from equations (5) and (6) we obtain

$$
\begin{align*}
x(0) & =c_{1}-4 \equiv 4 \tag{7}\\
x^{\prime}(0) & =-6 c_{1}+10 c_{2}+24 \equiv 36 . \tag{8}
\end{align*}
$$

We solve equations (7) and (8) for c_{1} and c_{2} to obtain $c_{1}=8$ and $c_{2}=6$. So the solution (the equation of motion) is

$$
\begin{equation*}
x(t)=e^{-6 t}(8 \cos 10 t+6 \sin 10 t)-4 \cos 8 t+3 \sin 8 t \tag{9}
\end{equation*}
$$

NOTES \& NEW CONCEPTS:

1. In this example, the complementary solution $x_{c}(t)$ (see Eq. (2)) represents decaying oscillation, i.e.,

$$
x_{c}(t) \rightarrow 0 \quad \text { as } t \rightarrow \infty .
$$

2. In this example, the particular solution $x_{p}(t)$ (see Eq. (4)) represents simple harmonic motion, i.e., constant amplitude oscillation. It does not decay to zero as $t \rightarrow \infty$ but oscillates with constant amplitude for all time.
3. When these events occur, we call

- $x_{c}(t)$ a transient term since it decays to zero, and
- $x_{p}(t)$ a steady state term.

In other words, in this example if time t is sufficiently large, then we may approximate the equation of motion $x(t)$, given by Eq. (9), by the particular solution x_{p} :

$$
x(t) \approx x_{p}(t)=-4 \cos 8 t+3 \sin 8 t
$$

Thus, if we're interested only in the steady state solution (the long term behavior of the system), then we merely need to perform Steps 1 and 2 and not do Steps 3 and 4 at all - BIG time saver!

Thus:

- The steady state amplitude (of oscillation) is

$$
A_{s s}=A_{p}=\sqrt{(-4)^{2}+(3)^{2}}=\sqrt{25} \mathrm{~m}=5 \mathrm{~m}
$$

- The steady state period (of oscillation) is

$$
T_{s s} \equiv \frac{2 \pi}{8}=\frac{\pi}{4} \text { sec } / \text { cycle }
$$

which is the same as the period of the driving force $F(t)$.

- The steady state frequency (of oscillation) is

$$
f_{s s} \equiv \frac{1}{T}=\frac{4}{\pi} \text { cycles } / \text { sec }=\frac{4}{\pi} \mathrm{~Hz}
$$

which is the same as the frequency of the driving force $F(t)$.

