Dr. Kevin G. TeBeest
Assoc. Prof. of Applied Mathematics
Kettering University

Example 5:  Forced Motion with Transient and Steady State Terms

> de := 2*diff(x(t),t$2) + 24*diff(x(t),t) + 272*x(t) = 1200*sin(8*t);
`+`(`*`(2, `*`(diff(diff(x(t), t), t))), `*`(24, `*`(diff(x(t), t))), `*`(272, `*`(x(t)))) = `+`(`*`(1200, `*`(sin(`+`(`*`(8, `*`(t))))))) (1)

Solve the above ODE, subject to initial conditions x(0) = 4  and  x'(0) = 36 . Store the result in X:

> X := rhs( dsolve( {de, x(0) = 4, D(x)(0) = 36 }, x(t) ) );
`+`(`*`(6, `*`(exp(`+`(`-`(`*`(6, `*`(t))))), `*`(sin(`+`(`*`(10, `*`(t))))))), `*`(8, `*`(exp(`+`(`-`(`*`(6, `*`(t))))), `*`(cos(`+`(`*`(10, `*`(t))))))), `-`(`*`(4, `*`(cos(`+`(`*`(8, `*`(t))))))), ... (2)

Simplify the solution, and store the result in X:

> X := combine( X, trig );
`+`(`*`(6, `*`(exp(`+`(`-`(`*`(6, `*`(t))))), `*`(sin(`+`(`*`(10, `*`(t))))))), `*`(8, `*`(exp(`+`(`-`(`*`(6, `*`(t))))), `*`(cos(`+`(`*`(10, `*`(t))))))), `-`(`*`(4, `*`(cos(`+`(`*`(8, `*`(t))))))), ... (3)
> xp := -4*cos(8*t) + 3*sin(8*t);
`+`(`-`(`*`(4, `*`(cos(`+`(`*`(8, `*`(t))))))), `*`(3, `*`(sin(`+`(`*`(8, `*`(t))))))) (4)
 

Plot the solution: 

> plot( [ xp, X ], t = 0 .. 2, thickness = [10, 5], color = [red, blue], title = `Ex 5: Forced Motion`, ytickmarks = 5, thickness = 5, titlefont = [HELVETICA, BOLD, 16], legend = ["Partic. Soln xp(t)     ", "Solution x(t)"], legendstyle = [ font = [HELVETICA,BOLD,14] ], size = [560,400] );
 

Plot_2d
 

 

The complementary solution xc(t) represents decaying oscillation while the particular solution xp(t) is simple harmonic. In this case we say the complementary solution is transient and the particular solution is steady. So after a sufficient amount of time has passed (about 1/2 second in this example), the motion has reached steady state, and we may approximate the equation of motion x(t) by the particular solution.

x(t)   ≈   xp(t)     for   t ≳ 0.5 sec