The method of Variation of Parameters is used to construct a particular solution y_{p} of a 2nd-order, linear, nonhomogeneous ODE of the form:

$$
\begin{equation*}
1 y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=f(x) \tag{N}
\end{equation*}
$$

where the coefficients a_{1} and a_{0} may be functions of x. (This method may be generalized to solve higher order ODEs.)
IMPORTANT: note that the first term must be a lone $y^{\prime \prime}$.

STEP 1:

Obtain the two linearly independent solutions y_{1} and y_{2} of the associated homogeneous problem

$$
\begin{equation*}
y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 \tag{H}
\end{equation*}
$$

We did this in Section 4.3 to obtain the complementary solution of (N) :

$$
\begin{equation*}
y_{c}=c_{1} y_{1}+c_{2} y_{2} . \tag{C}
\end{equation*}
$$

STEP 2: Use Variation of Parameters to construct a particular solution y_{p} of problem (N):
(a) Set:

$$
\begin{aligned}
W & \equiv\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} \\
W_{1} & \equiv\left|\begin{array}{cc}
0 & y_{2} \\
f & y_{2}^{\prime}
\end{array}\right|=-y_{2} f, \quad W_{2} \equiv\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & f
\end{array}\right|=+y_{1} f .
\end{aligned}
$$

(b) Set

$$
u_{1} \equiv \int \frac{W_{1}}{W} d x, \quad u_{2} \equiv \int \frac{W_{2}}{W} d x
$$

(c) Then a particular solution of (N) is

$$
\begin{equation*}
y_{p}=u_{1} y_{1}+u_{2} y_{2} . \tag{P}
\end{equation*}
$$

Simplify y_{p} if possible.

STEP 3: Then the general solution of the nonhomogeneous problem (N) is

$$
\begin{equation*}
y=y_{c}+y_{p} . \tag{G}
\end{equation*}
$$

Simplify y if possible.

STEP 4: Apply any initial or boundary conditions to the general solution (G), NOT to the complementary solution (C).

