The method of Variation of Parameters is used to obtain the general solution of the ODE

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+2 y=e^{x} \sec x . \tag{N}
\end{equation*}
$$

IMPORTANT: Note that the first term is a lone $y^{\prime \prime}$, so $f(x)=e^{x} \sec x$.

STEP 1:

Obtain the two linearly independent solutions y_{1} and y_{2} of the associated homogeneous problem

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+2 y=0 . \tag{H}
\end{equation*}
$$

They are

$$
y_{1}=e^{x} \cos x, \quad y_{2}=e^{x} \sin x,
$$

so the complementary solution of (N) is

$$
\begin{equation*}
y_{c}=c_{1} y_{1}+c_{2} y_{2}=c_{1} e^{x} \cos x+c_{2} e^{x} \sin x . \tag{C}
\end{equation*}
$$

STEP 2: Use Variation of Parameters to construct a particular solution y_{p} of problem (N):
First,

$$
\begin{array}{rlrl}
y_{1}=e^{x} \cos x, & y_{2} & =e^{x} \sin x, \\
y_{1}^{\prime}=e^{x} \cos x-e^{x} \sin x, & y_{2}^{\prime}=e^{x} \sin x+e^{x} \cos x .
\end{array}
$$

(a) Set:

$$
\begin{aligned}
W & \equiv y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} \\
& =\left(e^{x} \cos x\right)\left(e^{x} \sin x+e^{x} \cos x\right)-\left(e^{x} \cos x-e^{x} \sin x\right)\left(e^{x} \sin x\right) \\
& =e^{2 x}, \\
W_{1} & \equiv-y_{2} f=-\left(e^{x} \sin x\right)\left(e^{x} \sec x\right)=-e^{2 x} \tan x, \\
W_{2} & \equiv+y_{1} f=\left(e^{x} \cos x\right)\left(e^{x} \sec x\right)=e^{2 x} .
\end{aligned}
$$

(b) Set

$$
\begin{aligned}
u_{1} & \equiv \int \frac{W_{1}}{W} d x=\int \frac{-e^{2 x} \tan x}{e^{2 x}} d x=-\int \tan x d x=\ln |\cos x| \\
u_{2} & \equiv \int \frac{W_{2}}{W} d x=\int \frac{e^{2 x}}{e^{2 x}} d x=\int 1 d x=x
\end{aligned}
$$

(c) Then a particular solution of (N) is

$$
\begin{equation*}
y_{p}=u_{1} y_{1}+u_{2} y_{2}=e^{x} \cos x \ln |\cos x|+x e^{x} \sin x \tag{P}
\end{equation*}
$$

STEP 3: Then the general solution of the nonhomogeneous problem (N) is

$$
\begin{equation*}
y=y_{c}+y_{p}=c_{1} e^{x} \cos x+c_{2} e^{x} \sin x+e^{x} \cos x \ln |\cos x|+x e^{x} \sin x \tag{G}
\end{equation*}
$$

