The method of Variation of Parameters is used to obtain the general solution of the ODE

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-6 y=e^{x} . \tag{N}
\end{equation*}
$$

IMPORTANT: Note that the first term is a lone $y^{\prime \prime}$, so $f(x)=e^{x}$.

STEP 1:

Obtain the two linearly independent solutions y_{1} and y_{2} of the associated homogeneous problem

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-6 y=0 . \tag{H}
\end{equation*}
$$

We already did this; they are

$$
y_{1}=e^{3 x}, \quad y_{2}=e^{-2 x}
$$

so the complementary solution of (N) is

$$
\begin{equation*}
y_{c}=c_{1} y_{1}+c_{2} y_{2}=c_{1} e^{3 x}+c_{2} e^{-2 x} . \tag{C}
\end{equation*}
$$

STEP 2: Use Variation of Parameters to construct a particular solution y_{p} of problem (N):
First,

$$
\begin{aligned}
y_{1}=e^{3 x}, & y_{2} & =e^{-2 x}, \\
y_{1}^{\prime}=3 e^{3 x}, & y_{2}^{\prime} & =-2 e^{-2 x} .
\end{aligned}
$$

(a) Set:

$$
\begin{aligned}
W & \equiv y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} \\
& =\left(e^{3 x}\right)\left(-2 e^{-2 x}\right)-\left(3 e^{3 x}\right)\left(e^{-2 x}\right)=-5 e^{x}, \\
W_{1} & \equiv-y_{2} f=-\left(e^{-2 x}\right)\left(e^{x}\right)=-e^{-x}, \\
W_{2} & \equiv+y_{1} f=\left(e^{3 x}\right)\left(e^{x}\right)=e^{4 x} .
\end{aligned}
$$

(b) Set

$$
\begin{aligned}
& u_{1} \equiv \int \frac{W_{1}}{W} d x=\int \frac{-e^{-x}}{-5 e^{x}} d x=\frac{1}{5} \int e^{-2 x} d x=-\frac{1}{10} e^{-2 x}, \\
& u_{2} \equiv \int \frac{W_{2}}{W} d x=\int \frac{e^{4 x}}{-5 e^{x}} d x=-\frac{1}{5} \int e^{3 x} d x=-\frac{1}{15} e^{3 x} .
\end{aligned}
$$

(c) Then a particular solution of (N) is

$$
\begin{equation*}
y_{p}=u_{1} y_{1}+u_{2} y_{2}=\left(-\frac{1}{10} e^{-2 x}\right)\left(e^{3 x}\right)+\left(-\frac{1}{15} e^{3 x}\right)\left(e^{-2 x}\right)=-\frac{1}{6} e^{x} . \tag{P}
\end{equation*}
$$

STEP 3: Then the general solution of the nonhomogeneous problem (N) is

$$
\begin{equation*}
y=y_{c}+y_{p}=c_{1} e^{3 x}+c_{2} e^{-2 x}-\frac{1}{6} e^{x} . \tag{G}
\end{equation*}
$$

STEP 4: Apply any initial conditions to the general solution (G), NOT to solution (C).

