The method of Undetermined Coefficients is used to construct a particular solution of a linear, nonhomogeneous ODE with constant coefficients:

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=g(x) \tag{N}
\end{equation*}
$$

when $g(x)$ is any linear combination of functions of the form

$$
k, \quad x^{m}, \quad e^{\alpha x}, \quad x^{m} e^{\alpha x}, \quad e^{\alpha x} \cos \beta x, \quad e^{\alpha x} \sin \beta x, \quad x^{m} e^{\alpha x} \cos \beta x, \quad x^{m} e^{\alpha x} \sin \beta x .
$$

The function $g(x)$ is often called the input function, the forcing function, or the driving force.

STEP 1:

Obtain the general solution of the associated homogeneous problem

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 . \tag{H}
\end{equation*}
$$

We did this in Section 4.3 to obtain

$$
\begin{equation*}
y_{c}=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n} . \tag{C}
\end{equation*}
$$

This general solution of (H) is called the complementary solution of (N), so we now denote it by y_{c}.
Notes:

1. y_{c} is the general solution of (H), not of (N).
2. The functions y_{1}, \ldots, y_{n} are linearly independent solutions of (H), not of (N).

STEP 2:

Use Undetermined Coefficients to construct a particular solution y_{p} of the nonhomogeneous problem (N). This is the method we'll learn in Section 4.4.

STEP 3:

Then the general solution of the nonhomogeneous problem (N) is

$$
\begin{equation*}
y=y_{c}+y_{p} . \tag{G}
\end{equation*}
$$

It is an n parameter family of solutions of (N).

STEP 4:

If there are any initial conditions, apply them to the general solution (G), NOT to solution (C)!

