Solve the nonhomogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}+4 y=-16 \sin 2 x \tag{N}
\end{equation*}
$$

with initial conditions

$$
y(0)=-3, \quad y^{\prime}(0)=10
$$

NOTE: The input function is $g(x)=-16 \sin 2 x$.

STEP 1:

Solve the associated homogeneous problem:

$$
\begin{equation*}
y^{\prime \prime}+4 y=0 \tag{H}
\end{equation*}
$$

to obtain the complementary solution of (N) :

$$
\begin{equation*}
y_{c}=c_{1} \cos 2 x+c_{2} \sin 2 x \tag{C}
\end{equation*}
$$

STEP 2:

Construct a particular solution y_{p} of (N) by Undetermined Coefficients.

Input Function:	Terms	
$g=-16 \sin 2 x$		$\sin 2 x$
$g^{\prime}=-32 \cos 2 x$		$\cos 2 x$
$g^{\prime \prime}=64 \sin 2 x$		$\sin 2 x$
	List:	$\cos 2 x, \sin 2 x$
	New List:	$x \cos 2 x, x \sin 2 x$

\mathcal{Q} : Do any terms in the List already appear in y_{c} ?
\mathcal{A} : Yes, so must modify the repeating terms:

$$
\cos x \rightarrow x \cos x, \quad \sin x \rightarrow x \sin x
$$

So a particular solution y_{p} of (N) must be a linear combination of terms in the New List:

$$
\begin{equation*}
y_{p}=a x \cos 2 x+b x \sin 2 x \tag{P}
\end{equation*}
$$

We will substitute y_{p} into (N), but first

$$
\begin{aligned}
y_{p} & =a x \cos 2 x+b x \sin 2 x \\
y_{p}^{\prime} & =a \cos 2 x-2 a x \sin 2 x+b \sin 2 x+2 b x \cos 2 x \\
y_{p}^{\prime \prime} & =-4 a \sin 2 x-4 a x \cos 2 x+4 b \cos 2 x-4 b x \sin 2 x .
\end{aligned}
$$

Plug these into (N) to obtain

$$
\begin{gathered}
y_{p}^{\prime \prime}+4 y_{p} \equiv-16 \sin 2 x \\
-4 a \sin 2 x-4 a x \cos 2 x+4 b \cos 2 x-4 b x \sin 2 x \\
+4(a x \cos 2 x+b x \sin 2 x) \quad \equiv \quad-16 \sin 2 x .
\end{gathered}
$$

Collect like terms:

$$
4 b \cos 2 x-4 a \sin 2 x+(-4 a+4 a) x \cos 2 x+(-4 b+4 b) x \sin 2 x \equiv-16 \sin 2 x
$$

simplify:

$$
4 b \cos 2 x-4 a \sin 2 x \equiv 0 \cos 2 x+-16 \sin 2 x
$$

Equate like terms:

$$
\begin{aligned}
& \cos 2 x: 4 b \equiv 0 \\
& \sin 2 x: \Longrightarrow \quad b=0 \\
& \hline
\end{aligned} \quad \Longrightarrow \quad a=4=0.16 \quad \begin{aligned}
&
\end{aligned}
$$

Litmus Test: Note that these terms are exactly those terms that were in "List".

So by (P), a particular solution of (N) is

$$
\begin{aligned}
y_{p} & =a x \cos 2 x+b x \sin 2 x \\
& =4 x \cos 2 x
\end{aligned}
$$

STEP 3:

Then the general solution of the nonhomogeneous problem (N) is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =c_{1} \cos 2 x+c_{2} \sin 2 x+4 x \cos 2 x
\end{aligned}
$$

It is a 2-parameter family of solutions of (N).

STEP 4:

Apply the initial conditions: $\quad y(0)=-3, \quad y^{\prime}(0)=10$.
So,

$$
\begin{aligned}
y(0) & =c_{1} \cos 0+c_{2} \sin 0+4 \cdot 0 \cdot \cos 0 \\
-3 & =c_{1} \\
\text { and } \quad y^{\prime}(0) & =-2 c_{1} \sin 0+2 c_{2} \cos 0+4 \cdot \cos 0-8 \cdot 0 \cdot \sin 0 \\
10 & =2 c_{2}+4
\end{aligned}
$$

So $\quad c_{1}=-3$ and $c_{2}=3$. So the initial value problem (IVP) has solution

$$
y=-3 \cos 2 x+3 \sin 2 x+4 x \cos 2 x
$$

