Solve the nonhomogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-6 y=250 x \cos x . \tag{N}
\end{equation*}
$$

NOTE: The input function is $g(x)=250 x \cos x$.

STEP 1:

Solve the associated homogeneous problem:

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-6 y=0 . \tag{H}
\end{equation*}
$$

We did this in Example 1, so the complementary solution of (N) is

$$
\begin{equation*}
y_{c}=c_{1} e^{3 x}+c_{2} e^{-2 x} . \tag{C}
\end{equation*}
$$

STEP 2:

Construct a particular solution y_{p} of (N) by Undetermined Coefficients.

Input Function:	Terms
$g=250 x \cos x$	$x \cos x$
$g^{\prime}=250 \cos x-250 x \sin x$	$\cos x, x \sin x$
$g^{\prime \prime}=-500 \sin x-250 x \cos x$	$\sin x, x \cos x$
	List:

\mathcal{Q} : Do any terms in the List already appear in y_{c} ?
\mathcal{A} : No, so we need not modify any terms in the List.
So a particular solution y_{p} of (\mathbb{N}) must be a linear combination of terms in the List:

$$
\begin{equation*}
y_{p}=a \cos x+b \sin x+c x \cos x+d x \sin x . \tag{P}
\end{equation*}
$$

We will substitute y_{p} into (N), but first

$$
\begin{aligned}
y_{p} & =a \cos x+b \sin x+c x \cos x+d x \sin x, \\
y_{p}^{\prime} & =-a \sin x+b \cos x+c \cos x-c x \sin x+d \sin x+d x \cos x, \\
y_{p}^{\prime \prime} & =-a \cos x-b \sin x-2 c \sin x-c x \cos x+2 d \cos x-d x \sin x .
\end{aligned}
$$

Plug these into (N) to obtain

$$
\begin{gathered}
y_{p}^{\prime \prime}-y_{p}^{\prime}-6 y_{p} \equiv 250 x \cos x, \\
-a \cos x-b \sin x-2 c \sin x-c x \cos x+2 d \cos x-d x \sin x \\
-(-a \sin x+b \cos x+c \cos x-c x \sin x+d \sin x+d x \cos x) \\
-6(a \cos x+b \sin x+c x \cos x+d x \sin x) \quad \equiv \quad 250 x \cos x .
\end{gathered}
$$

Collect like terms:

$$
\begin{aligned}
& (-a+2 d-b-c-6 a) \cos x+(-b-2 c+a-d-6 b) \sin x \\
& \quad(-c-d-6 c) x \cos x+(-d+c-6 d) x \sin x \quad \equiv \quad 250 x \cos x .
\end{aligned}
$$

simplify:

$$
\begin{aligned}
& (-7 a-b-c+2 d) \cos x+(a-7 b-2 c-d) \sin x \\
& \quad(-7 c-d) x \cos x+(c-7 d) x \sin x \quad \equiv \quad 250 x \cos x+0 x \sin x .
\end{aligned}
$$

Equate like terms:

$$
\begin{aligned}
x \cos x & : \\
x \sin x: & -7 c-d \equiv 250 \\
\cos x & :-7 d \equiv 0 \\
\sin x & : a-7 b-c+2 c-d \equiv 0
\end{aligned}
$$

Litmus Test: Note that these terms are exactly those terms that were in the "List".
Solve these to obtain

$$
a=2, \quad b=11, \quad c=-35, \quad d=-5 .
$$

So by (P), a particular solution of (N) is

$$
\begin{aligned}
y_{p} & =a \cos x+b \sin x+c x \cos x+d x \sin x \\
& =2 \cos x+11 \sin x-35 x \cos x-5 x \sin x
\end{aligned}
$$

STEP 3:

Then the general solution of the nonhomogeneous problem (N) is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =c_{1} e^{3 x}+c_{2} e^{-2 x}+2 \cos x+11 \sin x-35 x \cos x-5 x \sin x .
\end{aligned}
$$

It is a 2-parameter family of solutions of (N).

STEP 4:

Apply initial conditions to the general solution found in Step 3, NOT to solution (C).

