Solve the nonhomogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-6 y=18 x^{2}-52 \cos 2 x . \tag{N}
\end{equation*}
$$

NOTE: The input function is $g(x)=18 x^{2}-52 \cos 2 x$.

STEP 1:

Solve the associated homogeneous problem:

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-6 y=0 . \tag{H}
\end{equation*}
$$

We did this in Example 1, so the complementary solution of (N) is

$$
\begin{equation*}
y_{c}=c_{1} e^{3 x}+c_{2} e^{-2 x} . \tag{C}
\end{equation*}
$$

STEP 2:

Construct a particular solution y_{p} of (N) by Undetermined Coefficients.

Input Function:	Terms
$g=18 x^{2}-52 \cos 2 x$	$x^{2}, \cos 2 x$
$g^{\prime}=36 x+104 \sin 2 x$	$x, \sin 2 x$
$g^{\prime \prime}=36+208 \cos 2 x$	$a, \cos 2 x$
	List:

\mathcal{Q} : Do any terms in the List already appear in y_{c} ?
\mathcal{A} : No, so we need not modify any terms in the List.
So we seek a particular solution of (N) that is a linear combination of terms in the List:

$$
\begin{equation*}
y_{p}=a+b x+c x^{2}+d \cos 2 x+e \sin 2 x . \tag{P}
\end{equation*}
$$

We will substitute y_{p} into (N), but first

$$
\begin{aligned}
y_{p} & =a+b x+c x^{2}+d \cos 2 x+e \sin 2 x, \\
y_{p}^{\prime} & =b+2 c x-2 d \sin 2 x+2 e \cos 2 x, \\
y_{p}^{\prime \prime} & =2 c-4 d \cos 2 x-4 e \sin 2 x .
\end{aligned}
$$

Plug these into (N) to obtain

$$
\begin{aligned}
& \qquad y_{p}^{\prime \prime}-y_{p}^{\prime}-6 y_{p} \equiv 18 x^{2}-52 \cos 2 x \\
& 2 c-4 d \cos 2 x-4 e \sin 2 x \\
& -(b+2 c x-2 d \sin 2 x+2 e \cos 2 x) \\
& -6\left(a+b x+c x^{2}+d \cos 2 x+e \sin 2 x\right) \equiv 18 x^{2}-52 \cos 2 x .
\end{aligned}
$$

Collect like terms:

$$
\begin{aligned}
& (-4 d-2 e-6 d) \cos 2 x+(-4 e+2 d-6 e) \sin 2 x \\
& \quad-6 c x^{2}+(-2 c-6 b) x+(2 c-b-6 a) \equiv 18 x^{2}-52 \cos 2 x .
\end{aligned}
$$

simplify:

$$
\begin{aligned}
& (-10 d-2 e) \cos 2 x+(2 d-10 e) \sin 2 x \\
& \quad-6 c x^{2}+(-2 c-6 b) x+(2 c-b-6 a) \equiv 0+0 x+18 x^{2}-52 \cos 2 x+0 \sin 2 x
\end{aligned}
$$

Equate like terms:

$$
\begin{aligned}
x^{2}:-6 c \equiv 18 & \Longrightarrow c=-3 \\
x & :-2 c-6 b \equiv 0 \\
k & : 2 c-b-6 a \equiv 0 \\
\cos 2 x & :-10 d-2 e \equiv-52 \\
\sin 2 x & : 2 d-10 e \equiv 0
\end{aligned}
$$

The latter two equations give $d=5$ and $\quad e=1$.
Litmus Test: Note that these terms are exactly those terms that were in the "List".
So by (P), a particular solution of (N) is

$$
\begin{aligned}
y_{p} & =a+b x+c x^{2}+d \cos 2 x+e \sin 2 x \\
& =-\frac{7}{6}+x-3 x^{2}+5 \cos 2 x+\sin 2 x
\end{aligned}
$$

STEP 3:

Then the general solution of the nonhomogeneous problem (N) is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =c_{1} e^{3 x}+c_{2} e^{-2 x}-\frac{7}{6}+x-3 x^{2}+5 \cos 2 x+\sin 2 x .
\end{aligned}
$$

It is a 2-parameter family of solutions of (N).

STEP 4:

Apply initial conditions to the general solution found in Step 3, NOT to solution (C).

