Solve the nonhomogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-6 y=25 e^{3 x} . \tag{N}
\end{equation*}
$$

NOTE: The input function is $g(x)=25 e^{3 x}$.

STEP 1:

Solve the associated homogeneous problem:

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-6 y=0 . \tag{H}
\end{equation*}
$$

We did this in Example 1, so the complementary solution of (N) is

$$
\begin{equation*}
y_{c}=c_{1} e^{3 x}+c_{2} e^{-2 x} . \tag{C}
\end{equation*}
$$

STEP 2:

Construct a particular solution y_{p} of (N) by Undetermined Coefficients.

Input Function:		Terms
$g=25 e^{3 x}$		$e^{3 x}$
$g^{\prime}=75 e^{3 x}$		$e^{3 x}$
	List:	$e^{3 x}$
	New List:	$x e^{3 x}$

\mathcal{Q} : Do any terms in the List already appear in y_{c} ?
\mathcal{A} : Yes, so we must modify the repeating terms:
Term $e^{3 x}$ appears in y_{c}, so $e^{3 x}$ repeats once in the List. So attach an x^{1} to it to get $x e^{3 x}$:

$$
e^{3 x} \rightarrow x e^{3 x}
$$

So a particular solution y_{p} of (N) must be a linear combination of terms in the New List:

$$
\begin{equation*}
y_{p}=a x e^{3 x} . \tag{P}
\end{equation*}
$$

We will substitute y_{p} into (N), but first

$$
\begin{aligned}
y_{p} & =a x e^{3 x} \\
y_{p}^{\prime} & =a e^{3 x}+3 a x e^{3 x}, \\
y_{p}^{\prime \prime} & =6 a e^{3 x}+9 a x e^{3 x} .
\end{aligned}
$$

Plug these into (N) to obtain

$$
\begin{gathered}
y_{p}^{\prime \prime}-y_{p}^{\prime}-6 y_{p} \equiv 25 e^{3 x} \\
6 a e^{3 x}+9 a x e^{3 x}-\left(a e^{3 x}+3 a x e^{3 x}\right)-6 a x e^{3 x} \equiv 25 e^{3 x}
\end{gathered}
$$

Collect like terms:

$$
(9 a-3 a-6 a) x e^{3 x}+(6 a-a) e^{3 x} \equiv 25 e^{3 x}
$$

simplify:

$$
5 a e^{3 x} \equiv 25 e^{3 x}
$$

Equate like terms:

$$
e^{3 x}: 5 a \equiv 25 \quad \Longrightarrow \quad a=5
$$

Litmus Test: Note that this term is exactly that term that was in "List".

So by (P), a particular solution of (N) is

$$
y_{p}=a x e^{3 x}=5 x e^{3 x}
$$

STEP 3:

Then the general solution of the nonhomogeneous problem (N) is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =c_{1} e^{3 x}+c_{2} e^{-2 x}+5 x e^{3 x}
\end{aligned}
$$

It is a 2-parameter family of solutions of (N).

STEP 4:

Apply initial conditions to the general solution found in Step 3, NOT to solution (C).

