Solve the nonhomogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-6 y=-x e^{4 x} \tag{N}
\end{equation*}
$$

NOTE: The input function is $g(x)=-x e^{4 x}$.

STEP 1:

Solve the associated homogeneous problem:

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-6 y=0 . \tag{H}
\end{equation*}
$$

We did this in Example 1, so the complementary solution of (N) is

$$
\begin{equation*}
y_{c}=c_{1} e^{3 x}+c_{2} e^{-2 x} . \tag{C}
\end{equation*}
$$

STEP 2:

Construct a particular solution y_{p} of (N) by Undetermined Coefficients.

Input Function:	Terms
$g=-x e^{4 x}$	$x e^{4 x}$
$g^{\prime}=-e^{4 x}-4 x e^{4 x}$	$e^{4 x}, x e^{4 x}$
$g^{\prime \prime}=-8 e^{4 x}-16 x e^{4 x}$	$e^{4 x}, x e^{4 x}$
	List:

\mathcal{Q} : Do any terms in the list already appear in y_{c} ?
\mathcal{A} : No, so we need not modify any terms in the List.
So a particular solution y_{p} of (N) must be a linear combination of terms in the List:

$$
\begin{equation*}
y_{p}=a e^{4 x}+b x e^{4 x} . \tag{P}
\end{equation*}
$$

The coefficients a and b are to be determined.

We will substitute y_{p} into (N), but first

$$
\begin{aligned}
y_{p} & =a e^{4 x}+b x e^{4 x} \\
y_{p}^{\prime} & =4 a e^{4 x}+b e^{4 x}+4 b x e^{4 x} \\
y_{p}^{\prime \prime} & =16 a e^{4 x}+8 b e^{4 x}+16 b x e^{4 x}
\end{aligned}
$$

Plug these into (N) to obtain

$$
\begin{gathered}
y_{p}^{\prime \prime}-y_{p}^{\prime}-6 y_{p} \equiv-x e^{4 x} \\
16 a e^{4 x}+8 b e^{4 x}+16 b x e^{4 x}-\left(4 a e^{4 x}+b e^{4 x}+4 b x e^{4 x}\right)-6\left(a e^{4 x}+b x e^{4 x}\right) \equiv-x e^{4 x}
\end{gathered}
$$

Collect like terms:

$$
(16 b-4 b-6 b) x e^{4 x}+(16 a+8 b-4 a-b-6 a) e^{4 x} \equiv-x e^{4 x}
$$

simplify:

$$
6 b x e^{4 x}+(6 a+7 b) e^{4 x} \equiv 0 e^{4 x}-x e^{4 x}
$$

Equate like terms:

$$
\begin{aligned}
& x e^{4 x}: \quad 6 b \equiv-1 \quad \Longrightarrow \quad b=-1 / 6 \\
& e^{4 x}: 6 a+7 b \equiv 0 \Longrightarrow a=(-7 / 6) b=7 / 36
\end{aligned}
$$

Litmus Test: Note that these terms are exactly those terms that were in the "List".

So by (P), a particular solution of (N) is

$$
y_{p}=a e^{4 x}+b x e^{4 x}=\frac{7}{36} e^{4 x}-\frac{1}{6} x e^{4 x}
$$

STEP 3:

Then the general solution of the nonhomogeneous problem (N) is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =c_{1} e^{3 x}+c_{2} e^{-2 x}+\frac{7}{36} e^{4 x}-\frac{1}{6} x e^{4 x}
\end{aligned}
$$

It is a 2-parameter family of solutions of (N).

STEP 4:

Apply initial conditions to the general solution found in Step 3, NOT to solution (C).

