Solve the nonhomogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-6 y=18 x^{2} . \tag{N}
\end{equation*}
$$

NOTE: The input function is $g(x)=18 x^{2}$.

STEP 1:

Solve the associated homogeneous problem:

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}-6 y=0 . \tag{H}
\end{equation*}
$$

We did this in Example 1, so the complementary solution of (N) is

$$
\begin{equation*}
y_{c}=c_{1} e^{3 x}+c_{2} e^{-2 x} . \tag{C}
\end{equation*}
$$

STEP 2:

Construct a particular solution y_{p} of (N) by Undetermined Coefficients.

Input Function:	Terms
$g=18 x^{2}$	x^{2}
$g^{\prime}=36 x$	x
$g^{\prime \prime}=36$	
	List:
	a, x, x^{2}

\mathcal{Q} : Do any terms in the list already appear in y_{c} ?
\mathcal{A} : No, so we need not modify any terms in the List.
So a particular solution y_{p} of (N) must be a linear combination of terms in the List:

$$
\begin{equation*}
y_{p}=a+b x+c x^{2} . \tag{P}
\end{equation*}
$$

The coefficients a, b, c are to be determined, hence the name "Undetermined Coefficients".
We will substitute y_{p} into (N), but first

$$
\begin{aligned}
y_{p} & =a+b x+c x^{2}, \\
y_{p}^{\prime} & =b+2 c x, \\
y_{p}^{\prime \prime} & =2 c .
\end{aligned}
$$

Plug these into (N) to obtain

$$
\begin{gathered}
y_{p}^{\prime \prime}-y_{p}^{\prime}-6 y_{p} \equiv 18 x^{2}, \\
2 c-(b+2 c x)-6\left(a+b x+c x^{2}\right) \equiv 18 x^{2} .
\end{gathered}
$$

Collect like terms:

$$
2 c-b-2 c x-6 a-6 b x-6 c x^{2} \equiv 18 x^{2}
$$

simplify:

$$
-6 c x^{2}+(-2 c-6 b) x+(2 c-b-6 a) \equiv 0+0 x+18 x^{2}
$$

Equate like terms:

$$
\begin{array}{lll}
x^{2}: & -6 c \equiv 18 & \Longrightarrow \\
x: & -2 c-6 b \equiv 0 & \Longrightarrow \quad b=-3 \\
k: & 2 c-b-6 a \equiv 0 & \Longrightarrow \\
a=(2 c-b) / 6=-7 / 6
\end{array}
$$

Litmus Test: Note that these terms are exactly those terms that were in the "List".
So by (P), a particular solution of (N) is

$$
y_{p}=a+b x+c x^{2}=-\frac{7}{6}+x-3 x^{2} .
$$

STEP 3:

Then the general solution of the nonhomogeneous problem (N) is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =c_{1} e^{3 x}+c_{2} e^{-2 x}-\frac{7}{6}+x-3 x^{2}
\end{aligned}
$$

It is a 2-parameter family of solutions of (N).

STEP 4:

Apply initial conditions to the general solution found in Step 3, NOT to solution (C).

