Suppose a linear, homogeneous ODE with constant coefficients has a characteristic equation with these roots:

$$
m=0, \quad 0, \quad 0, \quad 0, \quad 3 \pm 5 i, \quad 3 \pm 5 i, \quad 3 \pm 5 i
$$

Write the general solution of the ODE.

SOLUTION:

Since the characteristic equation has 10 roots, there must be 10 linearly independent solutions. They are:

$$
\begin{aligned}
& m_{1}=0 \rightarrow y_{1}=e^{0 x}=1 \quad \text { (appears once), } \\
& m_{2}=0 \rightarrow y_{2}=x e^{0 x}=x \quad \text { (repeats once), } \\
& m_{3}=0 \rightarrow y_{3}=x^{2} e^{0 x}=x^{2} \quad \text { (repeats twice), } \\
& m_{4}=0 \rightarrow y_{4}=x^{3} e^{0 x}=x^{3} \quad \text { (repeats thrice), } \\
& m_{5,6}=3 \pm 5 i \rightarrow\left\{\begin{array}{l}
y_{5}=e^{3 x} \cos 5 x \\
y_{6}=e^{3 x} \sin 5 x
\end{array} \quad \text { (appears once) },\right. \\
& m_{7,8}=3 \pm 5 i \rightarrow\left\{\begin{array}{l}
y_{7}=x e^{3 x} \cos 5 x \\
y_{8}=x e^{3 x} \sin 5 x
\end{array} \quad \text { (repeats once) },\right. \\
& m_{9,10}=3 \pm 5 i \rightarrow\left\{\begin{array}{l}
y_{9}=x^{2} e^{3 x} \cos 5 x \\
y_{10}=x^{2} e^{3 x} \sin 5 x
\end{array} \quad \text { (repeats twice) } .\right.
\end{aligned}
$$

So the general solution of the ODE is

$$
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}+c_{4} y_{4}+c_{5} y_{5}+c_{6} y_{6}+c_{7} y_{7}+c_{8} y_{8}+c_{9} y_{9}+c_{10} y_{10} \\
= & c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}+c_{5} e^{3 x} \cos 5 x+c_{6} e^{3 x} \sin 5 x \\
& +c_{7} x e^{3 x} \cos 5 x+c_{8} x e^{3 x} \sin 5 x+c_{9} x^{2} e^{3 x} \cos 5 x+c_{10} x^{2} e^{3 x} \sin 5 x .
\end{aligned}
$$

This is a 10-parameter family of solutions. The parent ODE would have been 10th order. The characteristic equation would have been 10th degree.

