Suppose a linear, homogeneous ODE with constant coefficients has a characteristic equation with these roots:

$$
m=0, \quad-1, \quad 3, \quad 3, \quad 3, \quad-4 \pm 6 i .
$$

Write the general solution of the ODE.

SOLUTION:

Since the characteristic equation has 7 roots, there must be 7 linearly independent solutions. They are:

$$
\begin{aligned}
m_{1}=0 & \rightarrow y_{1}=e^{0 x}=1, \\
m_{2}=-1 & \rightarrow y_{2}=e^{-x}, \\
m_{3}=3 & \rightarrow y_{3}=e^{3 x} \quad \text { (appears once) }, \\
m_{4}=3 & \rightarrow y_{4}=x e^{3 x} \quad \text { (repeats once) }, \\
m_{5}=3 & \rightarrow y_{5}=x^{2} e^{3 x} \quad \text { (repeats twice) }, \\
m_{6,7}=-4 \pm 6 i & \rightarrow\left\{\begin{array}{l}
y_{6}=e^{-4 x} \cos 6 x \\
y_{7}=e^{-4 x} \sin 6 x
\end{array} .\right.
\end{aligned}
$$

So the general solution of the ODE is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}+c_{4} y_{4}+c_{5} y_{5}+c_{6} y_{6}+c_{7} y_{7} \\
& =c_{1}+c_{2} e^{-x}+c_{3} e^{3 x}+c_{4} x e^{3 x}+c_{5} x^{2} e^{3 x}+c_{6} e^{-4 x} \cos 6 x+c_{7} e^{-4 x} \sin 6 x .
\end{aligned}
$$

This is a 7-parameter family of solutions. The parent ODE would have been 7th order. The characteristic equation would have been 7th degree.

