Solve the homogeneous ODE

$$
\begin{equation*}
y^{\prime \prime \prime}+y^{\prime \prime}-8 y^{\prime}-12 y=0 \tag{H}
\end{equation*}
$$

This ODE is 3rd order, so we must determine 3 linearly independent solutions.

## Characteristic Equation:

$$
\begin{aligned}
& m^{3}+m^{2}-8 m-12=0 \\
\Longrightarrow & (m-3)(m+2)^{2}=0 \\
\Longrightarrow & (m-3)(m+2)(m+2)=0 \\
\Longrightarrow & m_{1}=+3, \quad m_{2}=-2, \quad m_{3}=-2 .
\end{aligned}
$$

Here the roots $m_{2}$ and $m_{3}$ are repeating. I say the root -2 appears once in $m_{2}$ and repeats once in $m_{3}$.

So 3 linearly independent solutions of $(H)$ are

$$
\begin{aligned}
& m_{1}=+3 \rightarrow y_{1}=e^{3 x} \\
& m_{2}=-2 \rightarrow y_{2}=e^{-2 x}, \quad \text { (appears once) } \\
& m_{3}=-2 \rightarrow y_{3}=x e^{-2 x} \quad \text { (repeats once). }
\end{aligned}
$$

So the general solution of $(H)$ is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3} \\
& =c_{1} e^{3 x}+c_{2} e^{-2 x}+c_{3} x e^{-2 x}
\end{aligned}
$$

This is a 3-parameter family of solutions.

