MATH 204

Solve the homogeneous ODE

$$y''' + y'' - 8y' - 12y = 0.$$
 (H)

This ODE is 3rd order, so we must determine 3 linearly independent solutions.

Characteristic Equation:

$$m^{3} + m^{2} - 8m - 12 = 0$$

$$\implies (m - 3)(m + 2)^{2} = 0$$

$$\implies (m - 3)(m + 2)(m + 2) = 0$$

$$\implies m_{1} = +3, \quad m_{2} = -2, \quad m_{3} = -2$$

Here the roots m_2 and m_3 are repeating. I say the root -2 appears once in m_2 and repeats once in m_3 .

So 3 linearly independent solutions of (H) are

So the general solution of (H) is

$$y = c_1 y_1 + c_2 y_2 + c_3 y_3$$

= $c_1 e^{3x} + c_2 e^{-2x} + c_3 x e^{-2x}$.

This is a 3-parameter family of solutions.