Solve the homogeneous ODE

$$
\begin{equation*}
4 y^{\prime \prime}+20 y^{\prime}+25 y=0 \tag{H}
\end{equation*}
$$

Characteristic Equation:

$$
\begin{aligned}
& 4 m^{2}+20 m+25=0 \\
\Longrightarrow & (2 m+5)^{2}=0 \\
\Longrightarrow & (2 m+5)(2 m+5)=0 \\
\Longrightarrow & m_{1}=-5 / 2, \quad m_{2}=-5 / 2
\end{aligned}
$$

These roots are real and equal. I say the root appears once in m_{1} and repeats once in m_{2}.
So 2 linearly independent solutions of (H) are

$$
\begin{aligned}
& m_{1}=-5 / 2 \rightarrow y_{1}=e^{-5 x / 2} \\
& m_{2}=-5 / 2 \rightarrow y_{2}=x e^{-5 x / 2}
\end{aligned}
$$

So the general solution of (H) is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1} e^{-5 x / 2}+c_{2} x e^{-5 x / 2} \quad \text { or } \\
& =e^{-5 x / 2}\left(c_{1}+c_{2} x\right) .
\end{aligned}
$$

This is a 2-parameter family of solutions.

