Partial fraction decomposition has many uses in mathematics, so it is important to become expert at decomposing rational functions. To decompose a rational function

$$
f(x)=\frac{N(x)}{D(x)},
$$

where both $N(x)$ and $D(x)$ are polynomials with $\operatorname{deg}(N)<\operatorname{deg}(D)$.

1. Fully factor the denominator:

$$
D(x)=r_{1}(x) r_{2}(x) \cdots r_{n}(x)
$$

where the r factors are irreducible.
2. Each r factor in the denominator generates one term in the decomposition of f.
3. Above each r factor, place a general polynomial that is one degree smaller than the degree of r. Namely,
(a) above a linear r factor, place a constant term a,
(b) above a quadratic r factor, place a linear term $(a x+b)$.

Use partial fraction decomposition to decompose the following rational functions.
FUNCTION FORM DECOMPOSITION

$$
\begin{array}{lcr}
\frac{4-3 x}{2 x^{2}+x} & \frac{a}{x}+\frac{b}{2 x+1} & \frac{4}{x}-\frac{11}{2 x+1} \\
\frac{5-2 x}{x^{2}-3 x+2} & \frac{a}{x-2}+\frac{b}{x-1} & \frac{1}{x-2}-\frac{3}{x-1} \\
\frac{36-2 x}{x^{2}-9} & \frac{a}{x-3}+\frac{b}{x+3} & \frac{5}{x-3}-\frac{7}{x+3} \\
\frac{-2 x^{2}+7 x+4}{x^{3}+x^{2}} & \frac{a}{x}+\frac{b}{x^{2}}+\frac{c}{x+1} & \frac{3}{x}+\frac{4}{x^{2}}-\frac{5}{x+1} \\
\frac{2 x+4}{x^{3}-4 x^{2}+4 x} & \frac{a}{x}+\frac{b}{x-2}+\frac{c}{(x-2)^{2}} \\
\frac{9 x^{2}+4 x+54}{x^{3}+9 x} & \frac{a}{x}+\frac{b x+c}{x^{2}+9} & \frac{1}{x}-\frac{1}{x-2}+\frac{4}{(x-2)^{2}} \\
\hline
\end{array}
$$

