An integrating factor is used to solve a first order, linear ODE of the form:

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=f(x) \tag{1}
\end{equation*}
$$

1. Set

$$
r=\int P(x) d x . \quad \text { no }+c
$$

2. The integrating factor is then

$$
\begin{equation*}
\mu=e^{r} \quad \text { (simplify) } \tag{2}
\end{equation*}
$$

3. Multiply Eq. (1) by function μ to obtain

$$
\begin{equation*}
\mu \frac{d y}{d x}+\mu P(x) y=\mu f(x) \tag{3}
\end{equation*}
$$

Litmus Test: The LHS of (3) should be $\frac{d}{d x}(\mu y)$. Confirm this.
Then Eq. (3) may be written as

$$
\begin{equation*}
\frac{d}{d x}(\mu y)=\mu f(x) \tag{4}
\end{equation*}
$$

4. Then integrate Eq. (4) to obtain

$$
\begin{equation*}
\mu y=\int \mu f(x) d x+c \tag{5}
\end{equation*}
$$

Divide by μ and substitute μ to obtain the solution in explicit form:

$$
y=\mathrm{ftn}(x)
$$

5. If there is an initial condition $y\left(x_{0}\right)=y_{0}$, apply it to the solution to determine the constant c.

NOTE: If the ODE has the form

$$
\frac{d x}{d y}+P(y) x=f(y)
$$

then merely:
A. Interchange $x \longleftrightarrow y$ to obtain

$$
\frac{d y}{d x}+P(x) y=f(x)
$$

B. Apply Steps 1-4 to solve this ODE for

$$
y=\operatorname{ftn}(x)
$$

C. Interchange $x \longleftrightarrow y$ to obtain the solution

$$
x=\operatorname{ftn}(y)
$$

