MATH 204

First Order, Linear ODEs: Integrating Factors

Dr. TeBeest

An integrating factor is used to solve a first order, linear ODE of the form:

$$\frac{dy}{dx} + P(x)y = f(x).$$
(1)

1. Set

$$r = \int P(x) dx$$
. no $+c$

2. The integrating factor is then

$$\mu = e^r \qquad \text{(simplify)} \tag{2}$$

3. Multiply Eq. (1) by function μ to obtain

$$\mu \frac{dy}{dx} + \mu P(x) y = \mu f(x) .$$
(3)

Litmus Test: The LHS of (3) should be $\frac{d}{dx}(\mu y)$. Confirm this. Then Eq. (3) may be written as

$$\frac{d}{dx}(\mu y) = \mu f(x) \,. \tag{4}$$

4. Then integrate Eq. (4) to obtain

$$\mu y = \int \mu f(x) \, dx + c \,. \tag{5}$$

Divide by μ and substitute μ to obtain the solution in explicit form:

 $y = \operatorname{ftn}(x)$.

5. If there is an initial condition $y(x_0) = y_0$, apply it to the solution to determine the constant c.

NOTE: If the ODE has the form

$$\frac{dx}{dy} + P(y)x = f(y),$$

then merely:

A. Interchange $x \longleftrightarrow y$ to obtain

$$\frac{dy}{dx} + P(x)y = f(x) \,.$$

B. Apply Steps 1-4 to solve this ODE for

$$y = \operatorname{ftn}(x)$$
.

C. Interchange $x \leftrightarrow y$ to obtain the solution

$$x = \operatorname{ftn}(y)$$
.

Prof. Kevin G. TeBeest © 2001-18

Kettering University

file: linear.tex

07/17/2018