A fin is a long and thin protrusion extending from a surface used to transfer heat.

Consider a cylindrical fin of radius r and length 1. The fin’s base is attached to a hot surface whose temperature is fixed at T_b, and the surrounding air is maintained at a cooler temperature T_o. The temperature $T = T(x)$ in the fin decreases with increased distance x from the base. The fin’s length is so much greater than its thickness that we may assume that its temperature depends only on x (the distance from the base).

The equation governing the temperature variation within the fin is

$$\frac{d^2T}{dx^2} = \omega^2(T - T_o), \quad 0 < x < 1, \quad (1)$$

$$T(0) = T_b, \quad T(1) = T_o, \quad (2)$$

where

$$k - \text{thermal conductivity, units W/mK}$$

$$h - \text{convection coefficient, units W/m}^2\text{K}$$

$$\omega^2 = \frac{2h}{r k}$$

Note: k, h, r, and ω are positive constants.

1. Use **undeterminate coefficients** to obtain the general solution $T(x)$ of ODE (1). The general solution will also involve constants ω and T_o.

2. Apply the boundary conditions (2) to obtain the temperature T explicitly in terms of x. The solution will also involve constants ω, T_b, and T_o. Then do the necessary algebra to show that the solution may be written as

$$T(x) = T_o + \frac{T_b - T_o}{e^{\omega} - e^{-\omega}} \cdot \left[e^{\omega(1-x)} - e^{\omega(x-1)} \right].$$

This gives the temperature in the fin at location x measured from the fin’s base.

You will study fins extensively if you take the first course in Heat Transfer.