Consider a first order ODE of the form

$$
\begin{equation*}
M d x+N d y=0 \tag{1}
\end{equation*}
$$

This ODE is called exact if

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \tag{ET}
\end{equation*}
$$

This is called the exactness test.

SOLVING AN EXACT ODE

You must first confirm that the ODE is exact. Then to solve it:

1. Set

$$
\begin{align*}
& \frac{\partial f}{\partial x}=M \tag{2a}\\
& \frac{\partial f}{\partial y}=N \tag{2b}
\end{align*}
$$

2. Integrate Eq. (2a) partially with respect to x (treat y as a const) to obtain

$$
\begin{equation*}
f=\mathrm{ftn}(x, y)+g(y) \tag{3}
\end{equation*}
$$

3. Force this expression for f to satisfy Eq. (2b).

That is, determine $\frac{\partial f}{\partial y}$ from Eq. (3), and set it equal to N.
This will give an equation for $g^{\prime}(y)$ (all x 's should drop from the equation):

$$
g^{\prime}(y)=\operatorname{ftn}(y) . \quad(\text { There should be no } x \text { 's! })
$$

Integrate this with respect to y to obtain $g(y)$, and subst. the result into Eq. (3) to obtain f.
4. Then the solution of ODE (1) is the equation

$$
\begin{equation*}
f=c \tag{4}
\end{equation*}
$$

where c is an arbitrary constant. This solution is usually in implicit form. Simplify it to the extent possible. It is not always possible to express the solution in explicit form.
5. If there is an initial condition $y\left(x_{0}\right)=y_{0}$, apply it to (4) (that is, plug in x_{0} for x and y_{0} for y) to determine the constant c. Then plug that value of c into (4) to obtain the solution of the IVP.

NOTE: We do NOT integrate both equations (2a) and (2b). We integrate only (2a).

