A Bernoulli equation is a first order ODE of the form:

$$
\begin{equation*}
1 y^{\prime}+P(x) y=f(x) \underline{y^{n}}, \quad n \neq 0,1 \tag{1}
\end{equation*}
$$

1. Divide Eq. (1) by y^{n} (multiply by y^{-n}) to obtain

$$
\begin{equation*}
y^{-n} y^{\prime}+P(x) y^{1-n}=f(x) \text {. } \tag{2}
\end{equation*}
$$

2. Set

$$
\begin{align*}
w & =y^{1-n}, \tag{3}\\
\text { so } w^{\prime} & =(1-n) y^{-n} y^{\prime} \quad \Longrightarrow \quad y^{-n} y^{\prime}=\frac{1}{1-n} w^{\prime} . \tag{4}
\end{align*}
$$

3. Substitute Eqs. (3) and (4) into Eq. (2) to obtain

$$
\frac{1}{1-n} w^{\prime}+P(x) w=f(x)
$$

Multiply this by $(1-n)$ to obtain

$$
\begin{equation*}
1 w^{\prime}+(1-n) P(x) w=(1-n) f(x) . \tag{5}
\end{equation*}
$$

This ODE is linear, and so can be solved for function w using integrating factors to obtain

$$
\begin{equation*}
w=\mathrm{ftn}(x)+c \tag{6}
\end{equation*}
$$

4. Then subst. w from Eq. (3) into this result, and simplify it (write it in explicit form, if possible).
5. If there is an initial condition $y\left(x_{0}\right)=y_{0}$, apply it to the solution to determine the constant c.

DON'T MEMORIZE THE FORMULAS. LEARN THE PROCESS!

NOTE: If $x=x(y)$ and the ODE has the form

$$
\begin{equation*}
\frac{d x}{d y}+P(y) x=f(y) x^{n} \tag{7}
\end{equation*}
$$

then merely:
A. Interchange $x \longleftrightarrow y$ to obtain

$$
\begin{equation*}
\frac{d y}{d x}+P(x) y=f(x) y^{n} \tag{8}
\end{equation*}
$$

B. Apply Steps $1-4$ to solve ODE (8).
C. Interchange $x \longleftrightarrow y$ to obtain the solution of Eq. (7).

