MATH-204 Differential Equations & Laplace Transforms

Prof. Kevin TeBeest, Ph.D.

Course Learning Objectives:

- 1. Understand the nature of a differential equation and the solution of a differential equation.
- 2. Solve linear differential equations and common first-order differential equations encountered in subsequent engineering courses and in engineering practice.
- 3. Use the Laplace transform together with its basic properties as a useful method to solve appropriate differential equations.
- 4. Solve differential equations using MAPLE.

APPROXIMATE LECTURE SCHEDULE^{1,2}

WEEK	SECTIONS
1	Review Basic Integration
	1.1 — Definitions and Terminologies
	2.2 — Separable Variables
2	2.3 – 1st Order Differential Eqns. (Integrating Factors)
	2.5 — Substitutions: Bernoulli Equations
3	2.5 — Substitutions: Homogeneous Differential Eqns.
	2.4 – Exact Differential Eqns.
4	EXAM 1 (tentative)
	4.1 — Higher Order Linear Differential Eqns. — Concepts and Theory
	4.3 — Homogeneous Linear ODEs with Constant Coefficients
5	4.4 — Nonhomogeneous Linear ODEs with Constant Coefficients:
	Superposition Principle
	4.6 — Nonhomogeneous Linear ODEs: Variation of Parameters
6	5.1.1 — Spring-Mass Apparatus w/o Drag: Simple Harmonic Motion
	(i.e., free undamped motion)
	5.1.2 — Spring-Mass Apparatus w/ Drag: Free Damped Motion
	EXAM 2 (tentative)
7	5.1.3 — Spring-Mass Apparatus: Driven (Forced) Motion
	5.1.4 – LRC Series Circuits (Analogous Systems)
8	7.1 — Laplace Transform (Definition and Tables)
	7.2 — Inverse Laplace Transform and Transform of a Derivative
9	7.3.1 - 1st Translation Theorem and Inverse
	7.3.2 - 2nd Translation Theorem and Inverse
	EXAM 3 (tentative)
10	7.4 — Transforms of Integrals (Convolution Theorem and Inverse)
	7.5 — Dirac Delta Function and Impulses
11	Finish remaining material
	FINAL EXAM – date to be set by the Registrar's Office

¹ This schedule is approximate as some sections will take longer to cover than others. You should refer to the "Course Web Site" daily for actual assignments.

² Maple assignments, quizzes, and supplemental application problems will be scattered throughout the material.

Winter 2020