Example 3

A solid E lies within the cylinder $x^{2}+y^{2}=1$, below the plane $z=4$, and above the paraboloid
$z=1-x^{2}-y^{2}$. The density ρ
[$\mathrm{gm} / \mathrm{cm}^{3}$] at any pt (x, y, z) in E is prop to its dist from the cylinder axis.
x, y, z are measured in cm .

Determine the mass of E.

Figure 8

Example 3 - Solution

Solution:

In cyl coords, $x^{2}+y^{2}=r^{2}$, so the cylinder is $r=1$, and the paraboloid is $z=1-r^{2}$, so

$$
E=\left\{(r, \theta, z) \mid 0 \leq \theta \leq 2 \pi, 0 \leq r \leq 1,1-r^{2} \leq z \leq 4\right\}
$$

Since the density at (x, y, z) is prop to the dist from the z axis, the density ftn is

$$
\rho=K r
$$

where K is the proportionality const.

Example 3 - Solution

Therefore, the mass of E is

$$
\begin{aligned}
m=\iiint_{E} \overbrace{\rho d V}^{d m} & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{1-r^{2}}^{4} \overbrace{(K r)}^{\rho} \overbrace{r d z d r d \theta}^{\bullet d V} \\
& =\int_{0}^{2 \pi} \int_{0}^{1} K r^{2}\left[4-\left(1-r^{2}\right)\right] d r d \theta \\
& =K \int_{0}^{2 \pi} d \theta \int_{0}^{1}\left(3 r^{2}+r^{4}\right) d r \\
& =2 \pi K\left[r^{3}+\frac{r^{5}}{5}\right]_{0}^{1}=\frac{12 \pi K}{5} \mathrm{gm}
\end{aligned}
$$

Example 4

A solid E lies inside the cylinder $x^{2}+y^{2}=1$ and inside the sphere of radius 2 centered at O. Determine the volume of E.

In cyl coords, the cylinder is given by $r=1$, and the sphere by
$x^{2}+y^{2}+z^{2}=4$ or $r^{2}+z^{2}=4$.
We'll determine the volume of the upper half E_{2} and multiply by 2 . So the limits of integration are:

	$L L$	$U L$
$r:$	$r=0$,	$r=1$,
$\theta:$	$\theta=0$,	$\theta=2 \pi$,
$z:$	$z=0$,	$z=\sqrt{4-r^{2}}$.

Example 4 - Solution

So the volume of E is

$$
\begin{aligned}
V(E) & =2 \iiint_{E_{2}} d V=2 \int_{\theta=0}^{2 \pi} \int_{r=0}^{1} \int_{z=0}^{\sqrt{4-r^{2}}} \overbrace{r d z d r d \theta}^{2 \pi} \\
& =\left.2 \int_{\theta=0}^{2 \pi} \int_{r=0}^{1} r z\right|_{z=0} ^{\sqrt{4-r^{2}}} d r d \theta \\
& =2 \int_{\theta=0}^{2 \pi} \int_{r=0}^{1} r \sqrt{4-r^{2}} d r d \theta \quad\left(\text { let } u=4-r^{2}\right) \\
& =2 \int_{\theta=0}^{2 \pi}-\left.\frac{1}{3}\left(4-r^{2}\right)^{3 / 2}\right|_{r=0} ^{1} d \theta \\
& =-\frac{2}{3} \int_{\theta=0}^{2 \pi}\left(3^{3 / 2}-4^{3 / 2}\right) d \theta
\end{aligned}
$$

Example 4 - Solution

$$
\begin{aligned}
V(E) & =-\frac{2}{3} \int_{\theta=0}^{2 \pi}\left(3^{3 / 2}-4^{3 / 2}\right) d \theta \\
& =-\left.\frac{2}{3}\left(3^{3 / 2}-4^{3 / 2}\right)\right|_{\theta=0} ^{2 \pi} \\
& =\frac{4 \pi}{3}(8-3 \sqrt{3}) \\
& =11.7447 \text { units }^{3}
\end{aligned}
$$

