Local Extrema and Saddle Points (Second Derivative Test)
 Dr. K. G. TeBeest
 08/20/2012

restart
with(plots) : with(plottools) :
$a:=-2$

$$
\begin{equation*}
-2 \tag{1}
\end{equation*}
$$

$b:=2$

$$
\begin{equation*}
2 \tag{2}
\end{equation*}
$$

$c:=-3$

$$
-3
$$

$d:=3$

$$
3
$$

The following defines a function f as a function of variables x and y.
$f:=(x, y) \rightarrow 4 \cdot x^{3}+y^{3}-12 \cdot x-3 \cdot y$

$$
\begin{equation*}
(x, y) \rightarrow 4 x^{3}+y^{3}-12 x-3 y \tag{5}
\end{equation*}
$$

$p:=\operatorname{plot} 3 d(f(x, y), x=a . . b, y=c . . d$, style $=$ patchcontour, contours $=[(3 \cdot k) \$ k=-8 . .8]$, scaling
$=$ unconstrained, axes $=$ boxed, transparency $=0.0$, title $=$ typeset $(z=f(x, y))$, titlefont $=[$ TIMES, BOLD, 22], shading $=$ zhue, grid $=[100,100]$) :
$q:=$ contourplot $(f(x, y), x=a . . b, y=c . . d$, filled $=$ true, thickness $=3$, contours $=[(3 \cdot k) \$ k=-8 . .8]$, coloring $=[$ blue, red $]$, grid $=[100,100])$:
$F:=\operatorname{transform}((x, y) \rightarrow[x, y,-26]):$
display ($\{p, F(q)\})$;

Let's determine the critical points of function f. First determine $\frac{\partial}{\partial x} f$ and $\frac{\partial}{\partial y} f$.
$f x:=\mathrm{D}_{1}(f) ; \quad \#$ This means differentiate f wrt x and store it as function $f x(x, y)$.

$$
\begin{equation*}
(x, y) \rightarrow 12 x^{2}-12 \tag{6}
\end{equation*}
$$

$f x x:=\mathrm{D}_{1,1}(f) ; \quad \#$ This means differentiate f wrt x twice and store it as function $f x x(x, y)$.

$$
\begin{equation*}
(x, y) \rightarrow 24 x \tag{7}
\end{equation*}
$$

$f x y:=\mathrm{D}_{1,2}(f) ; \quad \#$ This means differentiate f wrt x and y and store it as function $f x x(x, y)$.

$$
\begin{equation*}
0 \tag{8}
\end{equation*}
$$

$f y:=\mathrm{D}_{2}(f) \quad \#$ This means differentiate f wrt y and store it as function $f y(x, y)$.

$$
\begin{equation*}
(x, y) \rightarrow 3 y^{2}-3 \tag{9}
\end{equation*}
$$

fyy $:=\mathrm{D}_{2,2}(f) \quad \#$ This means differentiate f wrt y twice and store it as function $f y y(x, y)$.

$$
\begin{equation*}
(x, y) \rightarrow 6 y \tag{10}
\end{equation*}
$$

Let's determine d for the Second Derivative Test:
$d:=f x x \cdot f y y-(f x y)^{2} ; \quad d(x, y)$

$$
\begin{align*}
& f x x f y y \\
& 144 x y \tag{11}
\end{align*}
$$

Let's determine the critical points of function f .
We do so by setting $f x=0$ and $f y=0$ and solving simultaneously for x and y :
solve $(\{f x(x, y)=0, f y(x, y)=0\},\{x, y\})$

$$
\begin{equation*}
\{x=1, y=1\},\{x=1, y=-1\},\{x=-1, y=1\},\{x=-1, y=-1\} \tag{12}
\end{equation*}
$$

So the critical points of f are at $(1,1),(1,-1),(-1,1)$ and $(-1,-1)$.
Check the sign of d at the $C P(1,1)$:
$d(1,1)$
(13)

Since $d(1,1)>0$, we must check the sign of $f x x(1,1)$:
fxx $(1,1)$
24
Since $\mathrm{d}>0$ and $f x x>0$ at $(1,1)$, function f has a local minimum at point $C P(1,1)$. That local minimum is:
$f(1,1)$

$$
-10
$$

(15)

Check the sign of d at the CP $(1,-1)$:
$d(1,-1)$

$$
\begin{equation*}
-144 \tag{16}
\end{equation*}
$$

Since $\mathrm{d}<0$ at point $(1,-1)$, function f has a saddle point at $C P(1,-1)$, and there's nothing else to check.
Check the sign of d at the $\mathrm{CP}(-1,1)$:
$d(-1,1)$

$$
\begin{equation*}
-144 \tag{17}
\end{equation*}
$$

Since $\mathrm{d}<0$ at point $(-1,1)$, function f has a saddle point at $C P(-1,1)$, and there's nothing else to check. Check the sign of d at the $\mathrm{CP}(-1,-1)$:
$d(-1,-1)$

$$
\begin{equation*}
144 \tag{18}
\end{equation*}
$$

Since $d(-1,-1)>0$, we must check the sign of $f x x(-1,-1)$: $f x x(-1,-1)$

$$
\begin{equation*}
-24 \tag{19}
\end{equation*}
$$

Since $\mathrm{d}>0$ and $f x x<0$ at $(-1,-1)$, function f has a local maximum at $C P(-1,-1)$. That local maximum is:
$f(-1,-1)$

