Local Extrema and Saddle Points (Second Derivative Test) Dr. K. G. TeBeest 08/20/2012

restart with(plots): a := -2	with(plottools):	
	-2	(1)
$b \coloneqq 2$	2	(2)
$c \coloneqq -3$	-3	(3)
$a \coloneqq 3$	3	(4)
The following	defines a function <i>f</i> as a function of variables <i>x</i> and <i>y</i> .	
$f := (x, y) \to 4$	$4 \cdot x^3 + y^3 - 12 \cdot x - 3 \cdot y$	

$$(x, y) \rightarrow 4x^3 + y^3 - 12x - 3y$$
 (5)

- $p := plot3d(f(x, y), x = a ..b, y = c ..d, style = patchcontour, contours = [(3 \cdot k) k = -8 ..8], scaling$ = unconstrained, axes = boxed, transparency = 0.0, title = typeset(z = f(x, y)), titlefont = [TIMES, *BOLD*, 22], *shading* = *zhue*, *grid* = [100, 100]) :
- $q \coloneqq contourplot(f(x, y), x = a ..b, y = c ..d, filled = true, thickness = 3, contours = [(3 \cdot k) k = -8 ..8],$ coloring = [blue, red], grid = [100, 100]): $F := transform((x, y) \rightarrow [x, y, -26]):$

display({ p, F(q) });

Let's determine the critical points of function f. First determine $\frac{\partial}{\partial x} f$ and $\frac{\partial}{\partial y} f$.

 $fx := D_1(f); \#$ This means differentiate f wrt x and store it as function fx(x,y).

$$(x, y) \to 12 x^2 - 12$$
 (6)

 $fyy := D_{2,2}(f) \#$ This means differentiate f wrt y twice and store it as function fyy(x,y).

$$(x, y) \to 6 y \tag{10}$$

Let's determine d for the Second Derivative Test:

$$d := fxx \cdot fyy - (fxy)^2; \ d(x, y)$$

$$fxx fyy$$

$$144 x y$$
(11)

Let's determine the critical points of function f. We do so by setting fx = 0 and fy = 0 and solving simultaneously for x and y:

solve({
$$fx(x, y) = 0, fy(x, y) = 0$$
}, { x, y })
{ $x = 1, y = 1$ }, { $x = 1, y = -1$ }, { $x = -1, y = 1$ }, { $x = -1, y = -1$ } (12)
So the critical points of f are at (1, 1), (1, -1), (-1, 1) and (-1, -1).

Check the sign of d at the CP (1, 1): d(1, 1)

144 (13)

(14)

Since d(1, 1) > 0, we must check the sign of fxx(1, 1): fxx(1, 1)

Since d > 0 and fxx > 0 at (1, 1), function *f* has a local minimum at point CP(1, 1). That local minimum is: f(1, 1)

24

-10 (15)

Check the sign of d at the CP (1,-1): d(1,-1)

-144 (16)

Since d < 0 at point (1, -1), function *f* has a saddle point at CP(1, -1), and there's nothing else to check.

Check the sign of d at the CP (-1, 1): d(-1, 1)

-144 (17)

Since
$$d < 0$$
 at point $(-1, 1)$, function f has a saddle point at $CP(-1, 1)$, and there's nothing else to check.

Check the sign of d at the CP (-1,-1): d(-1,-1)

144 (18)

Since d(-1, -1) > 0, we must check the sign of fxx(-1, -1): fxx(-1, -1)

Since d > 0 and fxx < 0 at (-1, -1), function f has a local maximum at CP(-1, -1). That local maximum is: f(-1, -1)

10