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The following defines a function  as a function of variables  and .
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z = 4 x
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C y
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K 12 x K 3 y

Let's determine the critical points of function . First determine      and   .
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Let's determine d for the Second Derivative Test:

Let's determine the critical points of function f.
We do so by setting  fx = 0  and  fy = 0  and solving simultaneously for x and y:

So the critical points of  f  are at  and . 

Check the sign of d at the CP :
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Since  , we must check the sign of  : 
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Since d > 0 and fxx > 0 at , function f has a local minimum at point . That local minimum 
is:

Check the sign of d at the CP :

Since d < 0 at point , function f has a saddle point at 

Check the sign of d at the CP :

Since d < 0 at point , function f has a saddle point at 

Check the sign of d at the CP :

144
Since  , we must check the sign of  :

Since d > 0 and fxx < 0 at , function f has a local maximum at . That local maximum 
is:
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