Plotting in Polar Coordinates
Dr. K. G. TeBeest
Example 3: Plot 
 
 
A limacon with a loop. See Example 11 in the text.
Note how the curve fills in as the 
 range is increased.
 range is increased.
Here 
 is used instead of
 is used instead of 
 since
 since 
 is easier to type.
 is easier to type.
> r:= 1 - 2 * sin( t );
 
> plot( r, t = 0 .. 1*Pi/4, coords = polar, scaling = constrained, thickness = 2);
![[Maple Plot]](images/polar37.gif) 
> plot( r, t = 0 .. 2*Pi/4, coords = polar, scaling = constrained, thickness = 2);
![[Maple Plot]](images/polar38.gif) 
> plot( r, t = 0 .. 3*Pi/4, coords = polar, scaling = constrained, thickness = 2);
![[Maple Plot]](images/polar39.gif) 
> plot( r, t = 0 .. 4*Pi/4, coords = polar, scaling = constrained, thickness = 2);
![[Maple Plot]](images/polar310.gif) 
> plot( r, t = 0 .. 5*Pi/4, coords = polar, scaling = constrained, thickness = 2);
![[Maple Plot]](images/polar311.gif) 
> plot( r, t = 0 .. 6*Pi/4, coords = polar, scaling = constrained, thickness = 2);
![[Maple Plot]](images/polar312.gif) 
> plot( r, t = 0 .. 7*Pi/4, coords = polar, scaling = constrained, thickness = 2);
![[Maple Plot]](images/polar313.gif) 
> plot( r, t = 0 .. 8*Pi/4, coords = polar, scaling = constrained, thickness = 2);
![[Maple Plot]](images/polar314.gif) 
 See Example 4
     
        See Example 4
 Return to Section 10.3
     
        Return to Section 10.3
Dr. K. G. TeBeest
Applied Mathematics
Kettering University