First, recall that the graph of the function $\quad z=f(x, y) \quad$ is a surface in \mathbf{R}^{3}.
I. To understand the meaning of the partial derivative $f_{x}(a, b)$:

- Consider the cross section (trace) of the surface $z=f(x, y)$ in the plane $y=b$.

That trace is a curve C_{1} on the surface in the plane $y=b$.

- The value $f_{x}(a, b)$ has two meanings:

1. Geometric (graphical): The value $f_{x}(a, b)$ gives the slope of the tangent line to trace C_{1} at point (a, b).
2. Physical: The value $f_{x}(a, b)$ gives the rate of change of f with respect to x at point (a, b). Specifically:

If $f_{x}(a, b)>0$, then f is increasing in the $+x$ direction in the plane $y=b$.
If $f_{x}(a, b)<0$, then f is decreasing in the $+x$ direction in the plane $y=b$.
II. To understand the meaning of the partial derivative $f_{y}(a, b)$:

- Consider the cross section (trace) of the surface $z=f(x, y)$ in the plane $x=a$.

That trace is a curve C_{2} on the surface in the plane $x=a$.

- The value $f_{y}(a, b)$ has two meanings:

1. Geometric (graphical): The value $f_{y}(a, b)$ gives the slope of the tangent line to trace C_{2} at point (a, b).
2. Physical: The value $f_{y}(a, b)$ gives the rate of change of f with respect to y at point (a, b). Specifically:

If $f_{y}(a, b)>0$, then f is increasing in the $+y$ direction in the plane $x=a$.

If $f_{y}(a, b)<0$, then f is decreasing in the $+y$ direction in the plane $x=a$.

