First, recall that the graph of the function z = f(x, y) is a surface in \mathbb{R}^3 .

I. To understand the meaning of the partial derivative $f_x(a, b)$:

- Consider the cross section (trace) of the surface z = f(x, y) in the plane y = b.
 That trace is a curve C₁ on the surface in the plane y = b.
- The value $f_x(a, b)$ has two meanings:
 - 1. Geometric (graphical): The value $f_x(a, b)$ gives the slope of the tangent line to trace C_1 at point (a, b).
 - 2. **Physical:** The value $f_x(a, b)$ gives the rate of change of f with respect to x at point (a, b). Specifically:

If $f_x(a,b) > 0$, then f is *increasing* in the +x direction in the plane y = b.

If $f_x(a,b) < 0$, then f is *decreasing* in the +x direction in the plane y = b.

- **II.** To understand the meaning of the partial derivative $f_y(a, b)$:
 - Consider the cross section (trace) of the surface z = f(x, y) in the plane x = a.
 That trace is a curve C₂ on the surface in the plane x = a.
 - The value $f_y(a, b)$ has two meanings:
 - 1. Geometric (graphical): The value $f_y(a, b)$ gives the slope of the tangent line to trace C_2 at point (a, b).
 - 2. **Physical:** The value $f_y(a, b)$ gives the rate of change of f with respect to y at point (a, b). Specifically:

If $f_y(a,b) > 0$, then f is *increasing* in the +y direction in the plane x = a.

If $f_y(a,b) < 0$, then f is *decreasing* in the +y direction in the plane x = a.