
Kenneth L. Kaiser, Version 1/09/07 

����������		
��������������		
��������������		
��������������		
���� 

�������� �
��	������� ����������� �
��	������� ����������� �
��	������� ����������� �
��	������� ���������������
�����
����������
�����
����������
�����
����������
�����
��������
����
����
����
���������������������������������������������������

Introduction 
Transmission lines have very interesting properties, quite 
different in many ways to those normally associated with standard 
circuits.  These differences will be apparent in this concise 
overview of the important properties and equations used in the 
sinusoidal steady-state analysis of a single transmission line. 
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The transmission line in this discussion is to be considered two 
parallel conductors of length d, not too far apart, with uniform 
material around the conductors.  A transmission line is also 
referred to as just a line or cable.  The equations in this discussion 
can be used for twin-lead line, coaxial cable, some traces on 
printed circuit boards, and many other pairs of conductors.  The 
passive load impedance, ZL, at the output of the line, can be 
complex (i.e., contain both a real and an imaginary term): 

L L LZ R jX= +  
The source impedance, Zs, can also be complex.  The equations in 
this summary are for sinusoidal steady-state conditions.  Thus, the 
input source, shown as Vs with a source impedance of Zs, is in 
phasor form.  In the real time domain this source voltage is 

( ) ( ) ( )cos Re Rej t j t
s sv t A t Ae V eω θ ωω θ +� � � �= + = = � �� �  

where Vs is the phasor representation of the source voltage.  This 
source voltage is not equal to the voltage at the input of the line at 
z = 0 unless Zs = 0.  The phasor Vs is equal to the amplitude A 
when θ is zero.  It is important to recall from basic circuits that 
phasors are not a function of time.  This simplifies the analysis 
but requires the use of the complex operator 1j = − .  All of the 
voltage and current variables given in this discussion are phasors, 
including V+ and I(z), which is a phasor that is a function of z.  
Phasors have both an amplitude and a phase angle. 
 
 

Traveling and Standing Waves 
The voltage or current along a transmission line oriented parallel 
to the z axis can be described by the sum of (1) a wave traveling 
in the +z direction such as ( )1costAe t zα ω β θ− − + , which is 
referred to as forward or positive-traveling wave, and (2) a wave 
traveling in the −z direction such as ( )2costBe t zα ω β θ+ + , 
which is referred to as backward or negative-traveling wave.  The 
figure that follows is a plot of a “pure” traveling wave:  a wave 
that is only traveling in one direction, in this case the +z direction 
with no attenuation or loss (i.e., α = 0).  What complicates the 
plotting of these traveling waves is that they are both a function of 
time, t, and position, z.  Note that the maximum amplitude, 

max
V , 

and minimum amplitude, 
min

V , of the wave (its phasor 
amplitude) is the same.  Obviously, the strength of the signal is 

varying with time, but its phasor amplitude (e.g., A) is constant. 
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When both forward and backward traveling waves are present on 
a line, a standing wave can be produced.  The resultant wave stays 
in one location even as the time increases since the locations of 
the maximums and zeros appear to be fixed.  Note that the total 
minimum phasor amplitude, 

min
V , is zero for a standing wave 

when represented in the time domain for this particular situation. 
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For other conditions, however, the two traveling waves do not 
appear to generate either a pure traveling or standing wave but a 
kind of combination of the two.  An example of this situation 
follows.  In this case, the minimum phasor amplitude, 

min
V , is 

not zero. 
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It is very convenient in practice to measure the rms value of a 
voltage.  The rms value of a signal, which mathematically 
involves the time integration of the signal, is not a function of 
time.  The rms value of a signal as a function of z is considered a 
standing wave even though it is not a function of time.  This 
standing wave pattern is evident in the following plot. 
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Variables and Units 
variable name and SI units 

* complex conjugate 
− negative-traveling wave indicator 
∠ phase angle of a complex number 
+ positive-traveling wave indicator 

AdB one-way attenuation in dB when Zo = ZL ( )0≥  

C capacitance per unit length (F/m) 
d distance to load (m) 
G conductance per unit length (S/m) 
GL conductance of load when load is purely real 

I(z) phasor current in the upper conductor of the 
line at z (A) 

Im imaginary part 

inc incident to the load 

j complex operator 1−  
L inductance per unit length (Η/m) 

max maximum 
min minimum 
n integers including zero (0, 1, 2 )± ± �  
oc open-circuited load (ZL = ∞) 

Pavg average power (W) 
Q reactive power (VAR) 
R resistance per unit length (Ω/m) 
Re real part 
ref reflected from the load 
RL resistance of load when load is purely real 

rms root mean squared 
S complex power (VA) 
s voltage standing wave ratio (VSWR) 
sc short-circuited load (ZL = 0) 

tan-1 inverse tangent or arctangent 
v velocity (m/s) 

V(0) phasor voltage across the input of the line also 
referred to as the sending-end voltage (V) 

V(d) phasor voltage across the output of the line also 
referred to as the receiving-end voltage (V) 

V(z) phasor voltage across the line at z (V) 

V+ incident or forward component of traveling 
voltage phasor (V) 

V− 
reflected or backward component of traveling 
current phasor (V) 

z location along the line (m) 
Zin input impedance (Ω) 

L
inZ  input impedance with the load ZL (Ω) 

 
 

 

minz  location of first input impedance minimum 
from load (m) 

ZL load impedance (Ω) 
Zo characteristic impedance (Ω) 

Zo ≠ ZL mismatched 
Zo = ZL matched 

Zs source impedance (Ω) 
α attenuation constant (nepers/m) 
β phase constant (rad/m) 
γ propagation constant = α + jβ (1/m) 
Τ transmission coefficient 
λ wavelength (m) 
ρ (voltage) reflection coefficient 
φ phase angle of reflection coefficient (rad) 
ω radian frequency (rad/s)  

 
 

Lumped Model Parameters 
( )R z∆ ( )L z∆

( )G z∆ ( )C z∆

z∆  
An electrically small segment of a line of length ( )10z λ∆ <<  is 
shown.  The parameters R, L, G, and C are per unit length.  The 
resistance of both conductors is modeled by R.  The resistance of 
the dielectric between the two conductors is modeled by the 
conductance, G, which is not equal to 1/R.  (As G decreases, the 
dielectric losses decrease.)  The capacitance between the 
conductors is modeled by C, and the inductance of the path 
generated by the two conductors is modeled by L.  A line is 
considered lossless when both R and G are zero (or negligible).  A 
transmission line is not a single lumped circuit as shown but the 
sum of many of these lumped circuits.  (The number of these 
segments for a line of length d would be d/∆z.)  The resultant 
representation for the line as ∆z approaches zero is referred to as a 
distributed circuit. 
 

 

Characteristic Impedance 
The characteristic impedance of a line, Zo, is probably the most 
important parameter of a line.  This is the value often printed on 
common coaxial cable (e.g., 50 Ω or 75 Ω).  The characteristic 
impedance is not the total resistance or impedance of the cable, 
although it is often referred to as the line impedance, and it is not 
a function of the length of the cable. 

( ) ( )
( )

2

22o

RG LC j LG RCR j L
Z

G j C G C

ω ωω
ω ω

+ + −+= =
+ +

 

Generally, Zo is a complex value, but at higher frequencies it is 
approximately L C .  This real expression is the most 
commonly used equation for the characteristic impedance.  The 
following expressions are useful since they do not involve the 
square root of a complex number or function. 
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Reflection Coefficient 
The reflection coefficient is a measure of the closeness of ZL to 
Zo.  It is generally also a complex quantity unless both the load is 
purely resistive and the line is lossless.  When the load is equal to 
the line impedance, the line is referred to as matched and the 
reflection coefficient is zero.  A wave on a line impinging on a 
matched load will not reflect off the load. 
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At the load the reflection coefficient is the ratio of the reflected 
voltage component, V−, to the incident voltage component, V+.  (A 
reflection coefficient can also be defined for the current.)  
Although not used in this summary, the transmission coefficient 
is defined as 1 + ρ. 
 

Propagation Constant 
The propagation constant determines how quickly a wave 
attenuates or decays over the length of the line.  It also determines 
how the phase of the wave changes over the length of the line.  
The attenuation or loss is determined by α and the phase change 
by β. 
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The following approximations are useful since they do not 
involve the square root of a complex number or function. 
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Lossless Line Basics 
If the losses of a line are small, which is often the case if the 
frequency is not too small or too high, then the following 
relationships are used.  Note that the velocity of a wave on the 
line, v, and the characteristic impedance, Zo, are not a function of 
the frequency. 

0, 2 ,

1 , , 1o

LC

v LC Z L C

α β π λ ω
ω β ρ

= = =
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Input Impedance (Lossless Lines) 
The impedance looking into a transmission line is not 
necessarily equal to Zo or ZL.  The impedance looking toward 
the load along the line is periodic with a period of λ/2.  When 
the load is either a short or an open circuit, then the input 
impedance is either inductive or capacitive with no real 
component since there are no resistive “sources” along the 
lossless line.  When the load is resistive or complex, then the 
input impedance can be “nearly” anything.  Its value is a 
function of the frequency, line impedance, load impedance, 
phase constant, and length.  For the often desirable matched 
condition, ZL = Zo, the input impedance is always Zo.  When d 
= λ/4, the transmission line is referred to as a quarter-wave 
transformer. 
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When the line is electrically short and the load is purely 
resistive, the line impedance is resistive and inductive or 
resistive and capacitive dependent on the size of the load: 
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Interestingly, the maximum amplitude of the impedance 
looking toward the load is at the voltage maximums along the 
line.  The minimum amplitude of this impedance is at the 
voltage minimums along the line.  Furthermore, these 
maximum and minimum values are entirely real at these 
locations.  In order to obtain these extreme values, the line 
must be sufficiently long so that these values are reached. 
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The characteristic impedance can also be obtained by 
measuring the input impedance of the line when the load is a 
short circuit and an open circuit. 

sc oc
o in inZ Z Z=  

 

Voltage (Lossless Lines) 
The voltage across the line is described by a differential equation 
referred to as the transmission line equation: 

( ) ( )
2

2
2

dV z
V z

dz
β= −  

When this differential equation is solved, it is determined that the 
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total voltage across the conductors is given by the sum of a 
positive-traveling wave, j zV e β+ − , and a negative-traveling wave, 

j zV e β− .  Although the voltage waveform is spatially periodic, 
repeating every wavelength, λ, its amplitude repeats every λ/2. 

( ) [ ]
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The phase angle at λ/4 multiples along the line relative to the 
phase angle at the load is 

( ) ( )( ) ( )
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 The maximum amplitude of the voltage occurs at the load when 
ZL > Zo and ZL is purely resistive: 
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The minimum amplitude of the voltage occurs at the load when 
ZL < Zo and ZL is purely resistive: 
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When the load and line impedance are equal, the maximum and 
minimum amplitudes are equal: 

matched
max min

V V= 	  

 

Current (Lossless Lines) 
The current along the line is also described by the transmission 
line equation: 

( ) ( )
2

2
2

dI z
I z

dz
β= −  

The solution to this differential equation for the current is 
similar to the voltage expression.  It is not, however, merely 
equal to ( ) oV z Z  unless the line is matched.  Note the – sign 
in front of the negative-traveling term.  The amplitude of the 
current, as with the voltage, has a spatial period of λ/2. 
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The current amplitude minimum is located at the voltage 
amplitude maximum, and the current maximum at the voltage 
minimum.  The relationship between the current, voltage, and 
input impedance is shown in the given figure for a 
mismatched line (the variables are scaled by different 
factors). 
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Power (Lossless Lines) 
The degree of mismatch between the load and line determines the 
power that is actually delivered to the load.  Interestingly, the 
time-average power along a lossless line is not a function of z.  
This is reasonable since there are no line losses.  However, the 
reactive power, Q, is a function of z.  The sign of this imaginary 
power is an indication of whether the stored energy is inductive 
(+) or capacitive (−) for the given location, z.  The power 
absorbed by the load is given as PL,avg. 

1
( ) ( )

2 avgS V z I z P jQ∗= = +  
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The incident power is that power contained in the wave traveling 
toward the load, while the reflected power is that power contained 
in the wave reflected off the source in the direction of the input of 
the line. 
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Standing Wave Ratio (Lossless Lines) 
The standing wave ratio is often measured to determine the 
relative degree of mismatch between the load and line.  It can be 
defined in terms of the ratio of the voltage magnitude extremes or 
current magnitude extremes.  The standing wave ratio is always 
greater than or equal to one.  When the line is matched, the 
standing wave ratio is equal to one, the best that it can be.  
Generally, it is desirable to have a low standing wave ratio. 
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Lossy Line Basics 
For a lossy line where α ≠ 0, the waves do not exactly repeat with 
z since there is attenuation along the line.  The phase velocity is in 
general a function of frequency, v ω β= .  When the velocity is a 
function of frequency, distortion will occur for signals with more 
than one frequency component (e.g., a square wave or exponential 
pulse).  For the special case where L R C G= , the velocity is 
independent of the frequency and oZ  is real.  This is referred to as 
a distortionless line, even though there are losses on the line.  For 
a lossy line the reflection coefficient can be greater than one (but 
no greater than 2.41). 
 

Voltage (Lossy Lines) 
The voltage across a lossy line is described by a differential 
equation that is similar to the lossless case: 

( ) ( )
2

2
2

dV z
V z

dz
γ=  

The voltage across the line can be written in terms of the 
hyperbolic sine and cosine functions: 
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When the line is matched to its load, there is no reflection, 
only a damped forward-traveling wave.  For the three special 
cases that follow, the source impedance is equal to the line 
impedance: 
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Current (Lossy Lines) 
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The current along the line can be written in terms of the 
hyperbolic sine and cosine functions: 
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When the line is matched to its load, there is no reflection, only a 
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damped forward-traveling wave.  For the three special cases that 
follow, the source impedance is equal to the line impedance: 
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Input Impedance (Lossy Lines) 
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The parameters Zo, α, and β of a lossy line can be determined by 
measuring the input impedance for both a short-circuited and an 
open-circuited load.  Instead of using an open-circuited load to 
determine Zo, an arbitrary ZL can be used.  An “infinite” load 
impedance is not that simple to obtain at higher frequencies due 
to the load having nonzero capacitance. 
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Power (Lossy Lines) 
In general, the forward and reflected powers cannot be merely 
added as with the lossless line:  avg avg avgP P P+ −≠ +  
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Standing Wave Ratio (Lossy Lines) 
Generally, there is not a single value for the VSWR on a 
lossy line since the values of the maximum and minimum 
amplitudes are varying along the line.  The maximum and 
minimum possible values of these amplitudes (i.e., the 
envelopes) are 
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However, if the line is sufficiently long so that there are 
many spatial waves of the voltage/current, then an adjacent  
 

maximum and minimum can be used to determine a reasonable 
local VSWR. 
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The one-way loss or attenuation along a lossy line in dB, AdB, 
is often given per unit length (e.g., 1.6 dB/100 m) assuming a 
matched load.  The total loss in dB for a matched load is then 
this loss multiplied by the length of the line.  When the load is 
not matched to the line, the loss is greater than this matched-
loss value:  as the standing wave ratio increases, the losses 
increase.  The difference between the maximum and minimum 
voltage magnitudes (and currents) decreases when moving 
away from the load.  Even when the line is matched to the load, 
the magnitude of the voltage varies along the length of the line, 
being largest at the source or input. 
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Although the VSWR might be mostly conveniently measured at the 
input of the line, the VSWR at the load can be significantly greater 
for a lossy line. 
 

Auxiliary Relationships 
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