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Chapter 12:  Spectra of Periodic and Aperiodic Signals 
 
12.1 Determine whether each of the following functions are periodic.  If they are 

periodic, provide their fundamental frequency and period. 
 

a) ( ) ( ) ( )4cos 5 2sin 10x t t t= −  

b) ( ) ( ) ( )4cos 5 2sin 10 7p t t t= − −  

b) ( ) ( ) ( ) ( )3cos 6sin 10 7cos 15 45k t t t tπ π π= + − + �  

c) ( ) ( )4cos 5 2 2sin 10
5

j t t t
π� �= − +� �

� �
 

d) ( ) ( ) ( ) ( ) ( )23sin 30 6sin 30 7cos 35 15 cos 20 185n t t t t tπ π π π= + − + +� �  

e) ( ) ( ) ( ) ( )33cos 30 7cos 60 105 sin 15 85 12m t t t tπ π π= + − + − +� �  

f) ( ) ( )3cos 10105 tj tw t e e−= +  

g) ( ) ( ) ( )2 103sin 4 2cos 2 j tp t t t e= +  

 
12.2 Determine the fundamental frequency in Hz of the waveform represented by the 

following Fourier series. 
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12.3 Determine the (one- or single-sided) amplitude of the 3rd harmonic of the 

waveform represented by the following Fourier series. 
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12.4C For the periodic function, with at least one discontinuity per period, given in the 

Fourier series table in this chapter (the specific function provided by the 
instructor), plot N = 5, 10, 100, and 500 terms of the series.  Verify that the 
maximum overshoot is about 9% of the height of each discontinuity for each N. 

12.5C For the periodic function given in the Fourier series table in this chapter (the 
specific function provided by the instructor), plot the percent energy contained 
within the first N terms of the series versus N for N = 1 to 500 in 1 term 
increments.  Then, determine the value of N corresponding to about 90% 
percent energy (over one period). 

12.6C For the periodic function given in the Fourier series table in this chapter (the 
specific function provided by the instructor), verify via the integral 
relationships, all forms of the series provided in the table.  Do not use any 
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symmetry arguments to reduce the number or complexity of the integrations.  
Also, if specific dc, fundamental, and harmonic terms are given, verify that they 
are correct.  Finally, if the function has any symmetry, verify that all of 
properties (e.g., even harmonics are zero) related to the symmetry condition are 
satisfied. 

12.7 For the periodic function given in the Fourier series table in this chapter (the 
specific function provided by the instructor), check the expression against 
another series given in the table by using the dc shift, linearity, time reversal, 
time shifting, time differentiation, time integration, function multiplication 
properties or any combination of these properties.  Do not use the definition for 
the Fourier series as a check. 

12.8 Using the conversion relationships, verify each of the complex coefficients in 
Table 1 using the trigonometric coefficients.  Then, verify each of the 
trigonometric coefficients using the complex coefficients. 

 

Table 1 

n an bn Fn F-n 
0 1.25 - 0.624 - 
1 0 0.975 −0.488j 0.488j 
2 −0.401 0 −0.2 −0.2 
3 0 0.022 −0.011j 0.011j 
4 −0.104 0 −0.052 −0.052 
5 0 −0.017 0.0084j −0.0084j 

 
12.9 Using the conversion relationships, verify each of the complex coefficients in 

Table 2 using the trigonometric coefficients.  Then, verify each of the 
trigonometric coefficients using the complex coefficients. 

 

Table 2 

n an bn Fn F-n 
0 0.00211 - 0.00106 - 
1 1.27 0 0.637 0.637 
2 −0.00217 0.00173 −0.00109 − j0.000865 −0.00109 + j0.000865 
3 −0.424 0 −0.212 −0.212 
4 0.00235 −0.00355 0.00178 + j0.00178 0.00178 − j0.00178 
5 0.255 0 0.127 0.127 

 
12.10 For the periodic function given in the Fourier series table in this chapter (the 

specific function provided by the instructor), determine or verify all forms of the 
series (trigonometric, amplitude/phase, and exponential) using the conversion 
relationships.  Do not use the definitions for the Fourier series. 

12.11C By using the properties of both linearity, combine two periodic functions (both 
provided by the instructor) given in the series table.  Provide an analytical 
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description of this new periodic function over one complete period.  Plot this 
function using n = 5 and n = 10 terms. 

12.12C For the fractional rectified cosine wave where A = 2, T = 2 µs, and k = 0.2, 
determine, starting from the Fourier series definitions, both the trigonometric 
and exponential Fourier series for the dc term and the first 5 nonzero 
coefficients.  Then, compare the magnitude of the coefficients with the 
expression provided in the table.  Finally, plot both the exact waveform and the 
truncated trigonometric and exponential series over two periods. 

12.13C For the cosine pulse train where A = 2, T = 2 ms, and τ = 0.3 ms, determine, 
starting from the Fourier series definitions, both the trigonometric and 
exponential Fourier series for the dc term and the first 5 nonzero coefficients.  
Then, compare the magnitude of the coefficients with the expression provided in 
the table.  Finally, plot both the exact waveform and the truncated trigonometric 
and exponential series over two periods. 

12.14C For the cosine-squared pulse train where A = 2, T = 2 ms, and τ = 0.3 ms, 
determine, starting from the Fourier series definitions, both the trigonometric 
and exponential Fourier series for the dc term and the first 5 nonzero 
coefficients.  Then, compare the magnitude of the coefficients with the 
expression provided in the table.  Finally, plot both the exact waveform and the 
truncated trigonometric and exponential series over two periods. 

12.15EC For the filter given in Figure 1, plot both the output response in the time domain 
and the frequency domain (i.e., amplitude and phase spectrums) for a periodic 
input voltage provided by your insightful instructor.  Three different values of R 
should be used.  After selecting a reasonable value for C, the three values for R 
should be such that (1) the lowest cutoff frequency is one-half of the 
fundamental frequency, (2) midway between the fundamental and the first 
harmonic frequency, and (3) ten times the first harmonic frequency.  Then, 
comment on the time responses based on the speed and smoothness of the 
output. 

 
RR

C R

 
Figure 1 

 
12.16EC Repeat Problem 12.15 for the circuit given in Figure 2. 
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Figure 2 
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12.17 By comparing one specified Fourier transform pair (provided by the instructor) 

with two other transform pairs provided in the table in this chapter, provide two 
different partial checks of the Fourier transform pair.  One or more of the 
transform properties given in the Fourier transform properties table must be 
used.  These partial checks may not consist of merely multiplying the function 
or transform by a constant, setting a variable to zero, to infinity, or to another 
constant, or splitting or combining the function or transform (e.g., linearity).  Do 
not use the definition for the Fourier transform or the inverse transform as a 
check. 

12.18 For the Laplace transform pair number # given in the Laplace Transform table in 
this chapter (# provided by the instructor), determine whether all of the poles of 
the Laplace transform have negative real parts.  If so, determine through s = jω 
substitution, the corresponding Fourier transform. 

12.19 For the two time-domain functions provided in the Laplace transform table in 
this book given as #1 and #2 (both functions #’s provided by the instructor), 
determine whether all of the poles of both corresponding Laplace transforms 
have negative real parts.  If both of the transforms satisfy this criteria, sketch the 
time-domain functions s(t) and k(t): 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

#1 # 2

#1 # 2

s t f t u t f t u t

k t f t u t f t u t

= + − −

= − − +
 

 
Then, determine the Fourier transforms for both of these functions using the s = 
jω substitution approach (and the time-reversal property). 

12.20 Working in the time domain, verify that the total energy of each of the given 
signals is equal to 2a: 
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12.21 Verify the Bode magnitude plot provided in this chapter for each of the 

following transforms including all slopes and cutoff frequencies.  Also, what is 
the magnitude (in dB) of the transform for frequencies much less than the lowest 
cutoff frequency? 
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c) ( ) ( )
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12.22EC Compare the amplitude spectrums of a rectangular pulse and a Gaussian pulse.  

Assume that the energy and the maximum amplitude of both signals are about 
the same.  Determine and plot both the approximate straight-line Bode 
magnitude plots and the exact plots, and was done in this chapter, for both of 
these signals.  Then, determine the percent energy versus ω on the same set of 
axes for these signals for frequencies ranging from 1/10 to 10 of the cutoff 
frequency of the rectangular pulse. 

12.23C The results given in this chapter for the energy within the second cutoff 
frequency for a trapezoidal waveform are conservative.  Instead of 
approximating the sinusoidal function as in the book, use a numerical program 
to determine the fractional amount of energy contained from 0 to ( )1 rπτ  Hz.  

The fractional amount of energy should be plotted versus the rise time for a 
fixed pulse width.  Allow the rise time to vary from one one-hundredth of the 
pulse width to its maximum possible value.  What relationship between the 
pulse width and the rise time is required so that 90% of the energy is contained 
within the second corner frequency? 

12.24C Using a numerical program, plot the magnitude spectrum (in dB) of an aperiodic 
trapezoidal waveform when the rise time is both equal to and not equal to the 
fall time.  Select a reasonable rise time, τr, fall time, τf, and pulse width, τ.  The 
break frequencies should be clearly evident.  Is there a simple relationship for 
the break frequencies when the rise time is not equal to the fall time? 

12.25C If Io = 12 kA, η = 0.7, n = 2, τ1= 0.2 µs, and τ2 = 0.2 µs, determine the peak 
current, maximum current derivative, and total charge transfer if a lightning 
pulse is modeled using the Heidler function: 
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12.26S For n = 1, determine or locate the Fourier transform of the Heidler function: 
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Sketch the Bode magnitude plot of its amplitude spectrum.  Compare this 
spectrum with the double-exponential’s spectrum.  [Rakov] 

12.27C Using the plots given in this chapter for the double-exponential pulse, determine 
the values for α and β to model a lightning stroke with a rise time of 100 ns and 
pulse width of 60 µs.  Then, adjust C so that the maximum amplitude of the 
stroke is 40 kA.  Using these values, plot the resultant double-exponential 
function. 

12.28 Sketch two different impulse time functions that have approximately the same 
50% delay times but clearly different impulse responses.  Then, sketch two 
similar impulse responses that have clearly different 50% delay times. 

12.29 Sketch two different impulse time functions that have approximately the same 
centroid delay times but clearly different impulse responses.  Then, sketch two 
similar impulse responses that have clearly different centroid delay times. 

12.30 Sketch two different impulse time functions that have approximately the same 
10-90% rise times but clearly different impulse responses.  Then, sketch two 
similar impulse responses that have clearly different 10-90% rise times. 

12.31 Sketch two different impulse time functions that have approximately the same 
maximum sloped-based rise times but clearly different impulse responses.  
Then, sketch two similar impulse responses that have clearly different maximum 
slope-based rise times. 

12.32 Sketch two different impulse time functions that have approximately the same 
standard deviation rise times but different impulse responses.  Then, sketch two 
similar impulse responses that have different standard-deviation rise times. 

12.33 Verify that the average time delay for the rectangular pulse waveform 
 

( ) ( ) ( )x t u t u t a= − −  

 
is given by the expression 
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( ) ( )d dw w aτ τ= +  

 
where w(t) is the output response to the low pass system with a steady-state 
value of one; that is, the average time delay can be determined by examining the 
output response and determining the time where the output response is repeated 
a seconds later.  [Blinchikoff] 

12.34EC Determine the 10-90% rise time of an RL low-pass filter to a ramp input signal 
with a rise time of about τr.  Compare to the perfect step input response. 

12.35EC Determine the 10-90% rise time of an RC low-pass filter to a ramp input signal 
with a rise time of about τr.  Compare to the perfect step input response. 

12.36C For the Laplace transform pair number # given in the Laplace transform table in 
this book (# provided by the instructor), determine the centroid delay time and 
the standard deviation using the series expansion of the Laplace transform.  
Then, rewrite the transform so that it is in the form 
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where K is a constant.  As a check on the delay and rise time results obtained 
from the series expansion, determine the delay time and the rise time from the 
expressions 

 

( )2 2
1 1 1 1 2 2, 2 2d rb a b a a bτ τ π 
 �= − = − + −� �  

 
Assuming the given transform pair represents the Laplace transform of an 
impulse response, is the step response monotonic? 

12.37C Starting from their definitions and working with the time-domain impulse and 
step response functions, verify each of the delay and rise times listed in the 
tables in this chapter for the 
 
a) single-pole exponential pulse 
b) double-pole critically damped pulse 
c) causal Gaussian pulse 
d) noncausal Gaussian pulse 
 

12.38C Starting from the definitions, verify each of the bandwidths listed in the table in 
this chapter for the 
 
a) single-pole exponential pulse, ( ) ( )1H s s a= +  

b) double-pole critically damped pulse, ( ) ( )21H s s a= +  

c) noncausal Gaussian pulse, ( )
2 2

22
a

H a e
ω

ω π
−

=  
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d) sampling function, ( ) ( )2sin 2H Tω ω ω=  

 
12.39 Using the slope-based rise time 

 

( )

( )r
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and a modified version of the equivalent bandwidth 
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determine whether the time-bandwidth product is always 2π.  [Soliman] 

12.40 Verify each of the rise time-bandwidth products terms given in the matrix table 
in this chapter for the single-pole exponential pulse.  Which of the products is 
the smallest?  Which of the products is the largest?  Qualitatively explain, 
without performing any calculations or without reference to this table, which of 
these products should be the smallest and largest. 

12.41 Verify each of the rise time-bandwidth products terms given in the matrix table 
in this chapter for the Gaussian pulse.  Which of the products is the smallest?  
Which of the products is the largest?  Qualitatively explain, without performing 
any calculations or without reference to this table, which of these products 
should be the smallest and largest. 

 


