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Chapter 11:  Transient Behavior in the Frequency Domain 

 

11.1C In the early part of this chapter, the magnitude of the Laplace transform at 

various frequencies was numerically studied for a triangle function.  Repeat the 

entire numerical analysis and discussion for the following functions: 

 

a) ( )1

2
u t

t +
 

b) ( ) ( )2 4u t u t− − −  

 

The periods of the sinusoids used in the numerical analysis should have 

sufficient range to show accurately the amplitude spectrum of this time function.  

The parameter σ may be set to zero to illustrate more clearly the significance of 

the transform. 

11.2C Repeat Problem 11.1 for all three of the following functions: 

 

( ) ( ) ( )2 20 200
, ,

t t t
e u t e u t e u t

− − −
 

 

Then, compare the spectrums and discuss why the trend is reasonable. 

11.3 Use the definition for the Laplace transform to determine the Laplace transform 

for the each of the following functions: 

 

a) ( ) ( )t a u t−  

b) ( )tu t a−  

c) ( )at
e u t b

− −  

d) ( )at
te u t

−
 

e) ( ) ( )cosh at u t  

 

Verify that the expressions given in the Laplace transform table are correct.  An 

integral table may be used. 

11.4 Provide a partial check of the Laplace transform pair number # given in the full 

unabridged table in this book (# provided by the instructor) by using one or more 

of the transform properties and transforms provided in the abridged Table 1.  

The partial check may not consist of merely multiplying the function or 

transform by a constant, setting a variable to zero, to infinity, or to another 

constant, or splitting or combining the function or transform (e.g., linearity).  Do 

not use the definition for the Laplace transform or the inverse transform as the 

check. 

 

Table 1 
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Time Function Laplace Transform 
Time 

Function 

Laplace 

Transform 

( ) ( )f t a u t a− −  ( )as
e F s

−
 ( )tδ  1 

( )at
e f t

−
 ( )F s a+  ( )u t  

1

s
 

( )tf t  
( )dF s

ds
−  ( )tu t  

1

2s s

π
 

( )f t

t
 ( )

s

F s ds

∞

∫  ( )1
u t

t
 

s

π
 

( )df t

dt
 ( ) ( )0sF s f

−−  ( )at
e u t

−
 

1

s a+
 

( )
0

t

f t dt
−
∫  ( ) ( )

0

0

f t dt
F s

s s

+

−+
∫

 
( ) ( )sin at u t  

2 2

a

s a+
 

( )
0

t f t
dt

t∫  ( )1

s

F s ds
s

∞ 
 
 
∫  ( ) ( )cos at u t  

2 2

s

s a+
 

( ) ( )sinf t at  
( ) ( )1

2
F s ja F s ja

j
− − +  

 

( ) ( )sinh at u t  
2 2

a

s a−
 

( ) ( )cosf t at  ( ) ( )1

2
F s ja F s ja− + +    ( ) ( )cosh at u t  

2 2

s

s a−
 

( ) ( )sinhf t at  ( ) ( )1

2
F s a F s a− − +      

( ) ( )coshf t at  ( ) ( )1

2
F s a F s a− + +      

 

11.5 By using any of the transform properties given in Table 2, verify the Laplace 

transform of the periodic or other function # given in the unabridged table in the 

book (# provided by your wise instructor).  For the nonperiodic functions it may 

be necessary to sum several or many periodic functions or use various infinite 

series. 

 

Table 2 

Time Function Laplace Transform Comments 

( ) ( )f t f t T= +  ( )
0

1

1

T

st

Ts
f t e dt

e

−
−− ∫  

f(t) is a periodic function 

with a period of T 
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( )
2

T
f t f t

 = − + 
 

 ( )
2

02

1

1

T

st

Ts
f t e dt

e

−

−
+

∫  

( )f t is a periodic 

function with a period of 

T/2 (half-wave 

symmetry) 

( ) ( )

( )
0

1
2

where
2

n

n

nT
f t u t

T
f t f t

∞

=

 − − 
 

 = − + 
 

∑
 

( )
21

Ts

F s

e
−

−
 

half-wave rectification of 

f(t) (with half-wave 

symmetry) where F(s) is 

the transform of the entire 

periodic waveform (not 

just one period) 

( )

( )where
2

f t

T
f t f t

 = − + 
 

 

2

2

1
( )

1

( ) coth
4

Ts

T
s

e
F s

e

Ts
F s

−

−

 
+ 

 
 − 

 =  
 

 

full-wave rectification of 

f(t) (with half-wave 

symmetry) where F(s) is 

the transform of the entire 

periodic waveform (not 

just one period) 

 

11.6 Verify the transform pair given for the second derivative of the function 

 

( ) ( ) ( )4
3 sin 20

t
y t te t u t

−=  

( ) ( )( )
( ) ( )

2

2

2 22

2 20 4

4 20

d y t s
s

dt s

 +
⇔  

+ +  
 

 

by actually taking the second derivative of y(t) and then taking its transform. 

11.7 For the Laplace transform pair number # given in the table (# provided by the 

instructor), use the initial-value theorem and the final-value theorem (if it 

satisfies the negative, nonzero pole requirement) to determine the initial and final 

values of the time function from its transform.  Then, check these results by 

actually determining the initial and final values from the time function. 

11.8 Sketch and label each of the following functions: 

 

a) ( ) ( ) ( ) ( ) ( )2 1 3 4 6 3g x x u x u x u x= − + + − −  

b) ( ) ( ) ( ) ( ) ( ) ( ) ( )0.1
sin 2 3 sin 2 6 3 2 1 6 9

t
h t t u t t u t u t e u t

−= − − − − + + −  

c) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 3 3 1 5 6 4 7s t u t u t t t t u t u t= + − − + − − − + − − −    

d) ( ) ( ) ( ) ( ) ( )2
3 2 2 1 cos 2m t t u t u t t u tπ= − − − +  

e) ( ) ( )1
y

q y yu e= −  

f) ( ) ( )2 2
1x t t u t= −  

 

When determining the total output signal by summing the individual functions, 

the value of each individual function should be examined immediately before 
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and after any discontinuity.  When summing functions that are discontinuous, the 

output can be discontinuous. 

11.9 Using step functions, write a simple expression for the waveforms shown in 

Figure 1, Figure 2, Figure 3, and Figure 4.  Do not simplify the expression. 

 

t
3

1−

2

5

( )tx

 

Figure 1 

 

t
3−

2

3

( )ty

1−
4−

5−7−

 

Figure 2 

 

x
2

xe 4.04 −

4

( )xg

2

5
 

Figure 3 

 

t
1

1−

6

( )t10sin

2−

5.2−

( )tk

2 8
2−

12

 

Figure 4 

 

11.10 For the functions shown in Figure 1, Figure 2, Figure 3, and Figure 4, sketch 

their derivatives with respect to time without using any unit steps and without 

writing out an expression for the function.  Then, write a mathematical 
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expression for the functions using unit steps and then analytically determine its 

derivative from this expression.  Show that the graphical and analytical results 

are equal. 

11.11 Evaluate each of the following integrals involving the step function: 

 

a) ( ) ( ) ( )2
1 3

t

t
x t e u t u t dt

−

−∞

= − −∫  

b) ( ) ( ) ( ) ( )cos 1 2y t x u x u t x dx

∞

−∞

= − + +∫  

c) ( ) ( ) ( ) ( )
20

3 1 1 2

t

z t u u t dλ λ λ λ
−

= + + + −∫  

d) ( ) ( ) ( )
2

3 2 1 2

t

g t yu y u t y dy

−

= + + −∫  

e) ( ) ( ) ( )
10

2

3 2 1 5h t u x u t x dx
−

= + − +∫  

 

11.12 For the periodic or periodic-like function # provided in the Laplace transform 

table (# provided by your competent instructor), describe the function as a 

function of an infinite number of step functions in a summation form. 

11.13 Use the Laplace transform to verify the expressions given in this chapter for the 

impulse and step response for the voltage across the inductor for the series RL 

circuit. 

11.14 Use the Laplace transform to verify the expressions given in this chapter for the 

impulse and step response for the voltage across the resistor for the series RC 

circuit. 

11.15 Use the Laplace transform to verify the expressions given in this chapter for the 

impulse and step response for the voltage across the capacitor for the series RC 

circuit. 

11.16C Referring to Figure 5 where ( ) ( )cos
s

v t A tω= , using Laplace transforms 

determine the voltage across the inductor in the time domain.  Then, check the 

result by allowing the source frequency to be equal to zero.  Then, check the 

result by allowing the time to become sufficiently large so the transient part of 

the solution is negligible. 

 

source

R
sR

L

( )
−

+
tvs
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Figure 5 

 

11.17C Repeat Problem 11.16 for the voltage across R if the inductor is replaced with a 

capacitor, C. 

11.18C Repeat Problem 11.16 for the voltage across C if the inductor is replaced with a 

capacitor, C. 

11.19 For the circuit given in Figure 6, determine and then sketch the voltage across the 

capacitor for each of the following input signals.  Assume the initial voltage 

across the capacitor is zero volts.  Is the derivative of the step response the 

impulse response? 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2

( )

( )

( )

( )

( )

s

s

s

s

t

s

a v t t

b v t u t

c v t tu t

d v t t u t

e v t e u t

δ

−

=

=

=

=

=

 

 

( )
−

+
tv

C

R

C( )
−

+
tvs

 

Figure 6 

 

11.20E Using the Laplace transform, determine the time-domain voltage for the first 

three periods across the inductor in a simple series RL circuit.  The source 

voltage, which is in series with the R and the L, is a square wave with a period of 

T, dc offset of zero, and peak-to-peak amplitude of two.  If R >> L, sketch this 

voltage waveform for several periods and explain why this circuit is referred to 

as a differentiating circuit.  Compare these results with those provided in the 

Transient Behavior in the Time Domain chapter. 

11.21C Repeat the analysis given in the voltage-zapper discussion in this chapter for the 

high-voltage impulse generator shown in Figure 7.  For the numerical portion of 

the analysis, let R1 = 100 Ω, R2 = 1 kΩ, C1 = 10 µF, C2 = 1 µF, and vC1(0) = 30 

kV. 

 

( )
−

+
tvC 2

1R

2C2R1C

G

( )
−

+
01Cv
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Figure 7 

 

11.22C Repeat the analysis given in the voltage-zapper discussion in this chapter for the 

high-voltage impulse generator shown in Figure 8.  For the numerical portion of 

the analysis, let R1 = 100 Ω, R2 = 1 kΩ, R3 = 1 kΩ, C1 = 10 µF, C2 = 1 µF, and 

vC1(0) = 30 kV. 

 

( )
−

+
tvC 2

1R

2C1C

G

( )
−

+
01Cv 2R 3R

 

Figure 8 

 

11.23C Repeat the analysis given in the voltage-zapper discussion in this chapter for the 

high-voltage impulse generator shown in Figure 9.  For the numerical portion of 

the analysis, let R1 = 100 Ω, R2 = 1 kΩ, L = 1 µH, C1 = 10 µF, C2 = 1 µF, and 

vC1(0) = 30 kV. 

 

1R

1C

G

( )
−

+
01Cv 2R ( )

−

+
tvC 22C

L

 

Figure 9 

 

11.24C Repeat the entire “blimp amplitude” analysis given in this chapter (including the 

approximations and numerical analysis) for the given transfer function 

corresponding to the transmission into a shunt capacitive load: 

 

( ) 1

1
2

o

H s
sCZ

=
+

 

 

11.25C Repeat the entire “blimp amplitude” analysis given in this chapter (including the 

approximations and numerical analysis) for the given transfer function 

corresponding to the reflection from series inductive loading (i.e., an inductor 

connected in series between two transmission lines): 
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( ) 1

2
1

o

H s
sL

Z

−=
+

 

 

Select an appropriate value for L for the approximation to satisfy any conditions 

required in the approximation. 

11.26EC If R = 1 kΩ and C = 0.01 µF, determine and plot (on the same set of axes) the 

step response for each of the RC circuits given in Figure 10 using Laplace 

transforms.  Explain how these circuits shift the phase of the input signal.  

Which circuit has the greatest phase shift? 

 

( )
−

+
tvo

R

C( )iv t

+

−
( )

−

+
tvo

2R

2C( )iv t

+

−

2R

2C

( )
−

+
tvo

3R

3C( )i
v t

+

−

3R

3C

3R

3C

 

Figure 10 

 

11.27EC If R = 1 kΩ and C = 0.01 µF, using Laplace transforms, determine and plot (on 

the same set of axes) the impulse response for each of the circuits given in Figure 

10. 

11.28EC Repeat Problem 11.26 but interchange the positions of the resistor and the 

capacitors. 

11.29EC Repeat Problem 11.26 but replace all of the capacitors with inductors.  Let L = 

10 mH. 

11.30EC Repeat Problem 11.26 but interchange the positions of the resistors and the 

capacitors and then replace all capacitors with inductors.  Let L = 10 mH. 

11.31EC If R = 1 kΩ, C = 0.01 µF, and L = 10 mH, determine and plot both the impulse 

and step responses for the circuit shown in Figure 11 using Laplace transforms.  

Sketch the Bode magnitude plot of the voltage gain as a function of the variables 

R, L, and C for this circuit.  Why is this circuit sometimes referred to as a high-

pass filter? 

 

( )
−

+
tvo

R

C( )i
v t

+

−

R

L
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Figure 11 

 

11.32 For the circuit given in Figure 11, determine the transfer function corresponding 

to the ratio of the output voltage to the input voltage.  If the initial current 

through the inductor is i(0) (directed upward), the initial voltage across the 

capacitor is v(0) (positive polarity at the resistor node), and the transform of the 

input voltage is Vi(s), determine the frequency-domain expression for the voltage 

across the capacitor and the current through the inductor.  Do not substitute any 

values for R, L or C.  Use the initial-value theorem to check these initial values 

assuming that the input signal is not impulsive.  Is the transfer function any value 

in determining the voltage across the inductor? 

11.33 Referring to Figure 12, if the switch closes at t = 0 (with zero initial current 

through the inductor) and reopens at t = tx, determine the voltage vx(t) for t > 0 

using the Laplace transform technique.  If L and Vs are fixed in value, should the 

resistances be small or large to decrease the amplitude of any impulses or pseudo 

impulses in the voltage? 

 

Vs

L

R

Rx( )xv t

+

−

ix

 

Figure 12 

 

11.34C Continue the half-wave rectifier analytical and numerical analysis given in the 

later part of this chapter for the time interval T ≤ t ≤ 2T. 

11.35 Working in the frequency domain, determine I(s) and i(t) for the circuit given in 

Figure 13 assuming that the initial current through the inductor is i(0). 

 

R( )tiβ L

( )ti
 

Figure 13 

 

11.36 Working in the frequency domain, determine I(s) and i(t) for the circuit given in 

Figure 14 assuming that the initial voltage across the capacitor is v(0). 
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R( )tiβ C

( )ti

( )
−

+
0v

 

Figure 14 

 

11.37C Determine the expression for the current i(t) for the circuit given in Figure 15 if 

the supply voltage is 

 

( ) ( ) ( ) 0sv t mt u t u t a a= − − >    

 

Assume the initial current through the inductor is zero.  Then, plot this current if 

R1 = 10 Ω, R2 = 1 kΩ, R3 = 1 Ω, L = 1 µH, and m = a = τ/10, τ, and 10τ where τ 

is the time constant for this circuit. 

 

2R

L

3R

1R

( )sv t

+

−

( )ti

 

Figure 15 

 

11.38 Determine the expression for the output voltage in the time domain for the circuit 

given in Figure 16, which is a model for a microphone.  Assume that the input 

voltage is 

 

( ) ( ) ( )cos
i

v t A t u tβ=  

 

and the initial voltage across each capacitor is zero.  Then, determine the steady-

state version of this expression by allowing the transients to die off. 

 

 

( )
−

+
tvo

sR C

( )
−

+
tvi

R

C R

 

Figure 16 


