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Abstract: A new distributed protocol that provides an efficient and accurate method of
switching between a primary node that fails and a number of backup or redundant nodes
in an FTU (fault tolerant unit) has been developed. Upon node failure, the protocol
accurately determines the new primary node in the system. This causes failed components
to have a fail silent behaviour. With the protocol engaged, there is a seamless execution
of distributed applications in systems with multiple nodes under the presence of failures.
The protocol has been implemented, tested, and evaluated as part of a distributed safety-
critical architecture. Copyright © 2004 IFAC
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1. INTRODUCTION

Error detection and fault containment for safety-
critical systems has been extensively studied at the
communication architecture level  (Kopetz, 2003).
Examples of well known safety-critical architectures
include TTA (time triggered architecture)
(Kopetz,1994; Kopetz,1997) and FlexRay (FlexRay
Consortium). Critical failure modes at the
communication architecture level is another area that
has been extensively studied. Kopetz (2003)
summarizes the way the TTA architecture handles
various critical modes.

It is well known that some communication
services for safety-critical applications can be offered
at layers 1 and 2 (i.e., the communication controller)
or above, including the application (i.e., the host
computer). For example the TTP/C protocols offers
several safety-critical oriented services (e.g., group
multicast) at layers 1 and 2 while leaving the
responsibility of other services for the host computer.
Unfortunately much less is known about offering
services for safety-critical applications at the
application level. The area of application level
safety-critical protocols needs considerable more
development and experience particularly solutions
that meet the following requirements: scalable,
flexible, simple, and cost effective. The contribution
of this paper is an application level error detection
and management protocol for safety-critical
applications that meets these requirements. In
addition, the proposed protocol is designed on top of
CAN, a highly successful and widely deployed
protocol for real-time applications. Application level
protocols can be improved by taking into account the
nature of actual applications. For our protocol, we
have chosen a steer-by-wire system as our target
application. A steer-by-wire system is considered a
safety-critical application because component,
communication, or control failures may lead to injury
or loss of equipment and/or life (Bretz, 2001;
Amberkar et al 2002).

The specific objective of this paper is to
present an application level, CAN-based error

detection and fault containment protocol for safety
critical applications and to implement and evaluate
the protocol in the context of a simulated steer-by-
wire system (See Fig. 1). The protocol is part of a
ultra-dependable distributed architecture developed
at Kettering University. Details of the architecture
will be provided in other publications.

Figure 1. Components of a steer-by-wire system:
hand-wheel (left), controller (center) and road
wheel (right).

1.1 Motivation.

There are several trends that provided motivation to
seek simple and cost effective solutions to the
development of architectures and protocols for
safety-critical applications. First, there are already
some manufacturers that provide multiple CAN
communication controllers for some of their
microcontrollers. For example the S12
microcontrollers offers 5 independent CAN channels
and it is expected that this trend will continue.
Second, there are already some simple and
inexpensive sensor and actuators analog interfaces
with incorporated CAN interfaces (e.g., Microchip
MCP250XX).  Again, this trend is expected to
continue. Third, recent advances in mechatronics
indicate that there will be important developments in
distributed electromechanical components (e.g.,
several replicated steering-wheel actuators
performing the function of a single larger actuator).
Last but not least, it is expected that the current trend
on miniaturization of digital systems and
microcontrollers will continue yielding more
functionality at a lower cost.

1.1 Main Features of the Safety-Critical Protocol



The main features of the of the safety-critical
protocol include the following:
1 Massive replication of components
2 CAN2.0B-based (29 bit)
3 Scaleable, transparent (compatible with normal

CAN applications)
4 Simple, flexible, cost-effective

1.2 Other Relevant Work.

The idea of using a dependable time-triggered
paradigm driven by the application is new in the
proposed architecture and protocol described in this
paper. However the idea of using a dependable time-
triggered paradigm driven by the communication
controller is well known (Poledna, 1996; Kopetz,
1997; Pimentel and Sacristan, 2001). Two examples
of time-triggered architectures at the communication
level is TTA (time triggered architecture) (Kopetz,
1997) and Flexray (FlexRay Consortium). Whereas
the former is a pure time-triggered communication
protocol, the latter is a combination of time-triggered
and event triggered. There are also architectures that
have taken an event-triggered communication
protocol (e.g., CAN) and made it appear as a time-
triggered communication protocol. Two architectures
in this category are TTCAN (time triggered CAN)
(Muller et al, 2002) and FTT-CAN (flexible time-
triggered CAN) (Ferreira et al, 2002).  The major
difference in prior approaches from the one
considered in this paper is that prior architectures
still focus on the communication controller (i.e.,
layers 1 and 2 in the ISO reference model) whereas
our architecture uses an event-triggered
communication protocol (i.e., CAN) and a time-
triggered synchronization protocol at the application
layer.

2. PROCESS MODEL

As noted, the architecture and protocol are specific to
certain safety-critical applications that could be event
based or time-triggered based. Example of event
based applications include body bus automotive
functions such as opening a window or door. The
actual time of opening or closing a window is
completely random and is best modeled as an event
based system. Other functions such as engine
control, and steer-by-wire systems are continuous in
nature and are best modeled as a time-triggered
system.

Whether the application is event based or
time-triggered based, it can be modeled by the
system in Fig. 2 involving the system to be
controlled, sensors, actuators, and controllers
interconnected by a communication network. Node 1
collect measurements from sensors, send the
measured values to a controller (Node 2) which in
turn send control values to actuators through Node 3.
Fig. 3 depicts the events and parameters of the
communication process associated with nodes 1, 2,
and 3. In particular we note the following significant
communication events:

1. E1: sensor node queues message for
transmission (beginning of cycle)

2. E2: sensor message is sent on the bus
3. E3: sensor message is received by controller

node
4. E4: controller node finishes control algorithm

and queues control message for transmission
5. E5: control message is sent on the bus
6. E6: control message is received by actuator node

(end of cycle)

2.1 Assumptions

Regarding the process model and its communications
shown in Figs. 2 and 3 we assume the following:
1. A source (i.e., sensor) node will send messages

with a minimum inter-departure time. If
periodic, the source node will send messages
with a minimum period. This assumption is
needed in order to guarantee a deterministic
behaviour of the underlying CAN protocol.

2. A controller node (Node 2) will receive one or
more messages corresponding to sensor values
and generate controlled signals configured as
one or more output messages.

3. Source nodes will generate time-triggered cycles
(source nodes dictate the beginning of each cycle
via events E3 in Fig. 3) that are specific to an
application. Time triggered cycles are defined
from the viewpoint of an application rather than
from the viewpoint of communications. From a
timing perspective then, source nodes are master
nodes and all remaining nodes are slave nodes.

4. The communication system can support multiple
different applications each with their own
communication cycles (or equivalently sample
periods Tn). That is the system is multi-rate.

5. A multiple application system assumes that each
application has a sensor, controller (optional),
and actuator.

6. Deterministic behaviour can be guaranteed
(using CAN schedulability analysis) since the
traffic on the network is carefully controlled
thanks to assumption 1 above.

7. Messages of one cycle are not inter-mingled
with messages from a different cycle. This is
possible if schedulability analysis is used to
ensure that all possible messages in one cycle
will be sent before the next cycle begins.

Figure 2. Model for a typical control system
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Figure 3. Events and parameters of network
communications for a typical control system.

Fig. 4. A safety-critical system with replicated
components.

3. FAULT MANAGEMENT PROTOCOL

To deal with component, communication, and
control failures the architecture and protocols makes
use of massive replication of sensors, controllers, and
actuators. Component failures are detected by the
absence of messages generated by the component.
Communication failures are detected by absence of
messages on the communication line. Detecting
control failures depends on details of the
architecture, other protocols, and application
software which are outside the scope of this paper.
Each communication node (i.e., sensor, controller, or
actuator) has one or more replicated components and
configured as an FTU (fault tolerant unit). Fault
tolerant units are well known mechanisms to deal
with fault containment of safety-critical systems. The
regions protected by fault containment mechanisms
are referred to as fault containment regions (FCR).
Fig. 4 depicts the system of Fig. 2 where each node
is replaced by an FTU consisting of two internal
nodes .

If each replicated component sends an
independent message corresponding to sensor signals
and each message is treated independently from one
another (even though they correspond to the same
sensor signal) then there could be up to 32 different
messages arriving at the actuator FTU. Obviously,
the system would be extremely complex if it were to
handle all possible messages. To reduce complexity,

the main idea behind the protocol is to manage all
components in an FTU in such a way that it would
appear as just one node to the other FTU’s. Inside
each FTU, replicated components would
communicate with one another to elect the so-called
primary node with the remaining nodes acting as
secondary, tertiary, etc. For Fig. 4, the number of
independent messages arriving at the actuator FTU is
reduced from 32 to 4 thus simplifying the complexity
of the system.

Although the main idea behind the protocol
is the same, some details are different for sensor
FTU’s, controller FTU’s, and actuator FTU’s. This is
because sensor FTU’s are producers of information,
controller FTU’s are both consumers and potentially
producers and actuator FTU’s are consumers. The
protocol will be detailed for controller FTU’s. The
details of the protocols when applied to sensor and
actuator FTU’s vary slightly.

3.1 Fault Management Protocol for Controller
FTU’s.

For some application domains (e.g., automotive)
controller nodes are also known as electronic control
modules (ECU’s) thus we will use these terms
interchangeably. As noted, the fault management
protocol is only executed only by members (primary
and all its replicas) of a certain FTU, that is, it is an
intra-group protocol. It is envision that there could be
multiple applications on the same system thus the
application (App) type is encoded in the protocol
header of Fig. 5. For efficiency reasons, this header is
encoded using some of the 29 bits of the message ID
as specified in the CAN2.0B standard.

Figure 5. Protocol fields encapsulated in the 29-bit
identifier of CAN 2.0B.

The main assumption made by the fault management
protocol is that there is always a node acting as the
Primary node. If this condition is not true, the entire
system is considered to have failed and appropriate
messages are generated to indicate a human user of
this event. There are several protocol mechanisms
that help the system converge to a state involving a
Primary node and several active backup nodes. At
initialization, the primary node is specified.
Thereafter, each node (other than the primary) within
an FTU executes the fault management protocol to
determine the secondary, and additional backup
rankings of all nodes in the FTU. For example, in a
system with three controllers, both backup
controllers will negotiate which one will act as the
secondary node, and which one will act as the tertiary
node.
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At startup, all controllers belonging to the
same FTU request that a ranking of all replicated
components be started by sending the Rank  message.
The ranking procedure is controlled by a timer and
ends with a ranked set of replicated components. In
case more than one Rank message is received by a
node before the associated timer expires, the Rank
message is ignored. All other nodes in the same FTU
respond to Rank messages by sending their serial
numbers on the bus via the Serial message.  As a
result of all controllers sending their serial numbers,
all components in the particular ECU know of all the
other components on the same ECU. The backup
nodes are ranked based on their serial numbers into
secondary, tertiary, etc. If the primary node
component fails the other controllers detect this by
noting the absence of the missing message that
corresponds to the Primary. Upon failure of the
primary component, the secondary component will
take over immediately, transmit the message and
declare itself primary via a message called Active. If
a component returns after a failure, a ranking
procedure is invoked via the Rank  message to
determine a new ranked set of  backup nodes (i.e.,
secondary, tertiary, etc.) If a new component joins
the network, the same ranking procedure is
performed. Thus, the primary node is not disturbed
when failed nodes are repaired or when new nodes
are added to the network.

3.2 Main Protocol Rules

The main protocol rules are summaris ed as follows:
1. A primary node is designated when the system is

initialis ed
2. If the primary node fails, the secondary node

becomes primary automatically
3. If the secondary node fails, a ranking procedure

is invoked immediately to find a new secondary
node.

4. If the primary node goes into a CAN error
passive mode (as a result of noise on the bus) it
forces a reset thus acting as it has failed to let
other backup nodes to take over.

5. If a node acting as primary detects that there is
another primary, the first node will issue an
Identify message requesting the identity of the
Primary node. If a valid response is obtained, the
inquiring node ceases to be Primary and forces a
ranking immediately.

The following are the main functions of the primary
and secondary nodes.

Primary Node
The primary node is responsible for sending inter-
group data messages. For the hand wheel node, this
involves sending the hand wheel position to the ECU
FTU.

Secondary Node
The secondary node is responsible for monitoring the
primary node. The secondary node will check that
the primary node sends its inter-group messages on

time. This is achieved by monitoring event E4.  If the
secondary node detects that the primary node has
missed sending a message (i.e., event E4 did not
occur), the secondary node will immediately send the
late message, becomes primary and force a ranking
of all similar nodes.

Features of the Ranking Mechanism
• Ranking occurs on powerup, and when a failure

is detected
• Ranking does not stop or pause a currently

functioning system (A primary node does not
stop sending inter-group messages during
ranking. It will stop only when a new primary
node takes over and is ready to send inter-
group messages)

• Allows for a node to be deactivated, then return
to service once fixed at a later time without
disruption

• Allows for nodes to be added or removed
without disruption

• When the primary node fails, messages are never
completely missed, but are only delayed (for
example if primary message failure timer is
100ms, the secondary will wait 110ms, the
tertiary will wait 120ms (assuming that there
is no secondary), etc, to send the message
instead and take over as primary)

3.3 Protocol Messages

Communication on a CAN network is based on a set
of unique messages each with a specific
identification known as message ID. Since the fault
management protocol is based on CAN, it involves a
number of messages listed below.

Active Message
This message declares that the sender is the

Primary, Secondary, or Subsequent node. The type of
node is one parameter data of the message. The
Active message indicating Primary is automatically
sent by the secondary node upon detecting that the
primary node has failed. The Active message is also
sent by a node as a response to an Identify message
indicating that the node is Primary, Secondary, or
Subsequent node according to its current ranking.
Nodes receiving this message will disable sending
inter-group messages, and should have already been
ranked by the fault management algorithm. This
action also provides additional checks in case any
nodes may have missed the ranking algorithm and to
prevent two nodes attempting to simultaneously
assume the role of Primary node.

Rank Message
This message requests that all nodes in a certain FTU
(other than the primary node) start their rank
procedure. If a node is already executing its ranking
procedure this message is ignored. The Rank
message is sent whenever the following events
happen:

1. On power-up initialization



2. When a failure has been detected on any backup
node (i.e., other than the Primary node)

3. When a new backup node enters the system
4. When a failed node re-enters the system after it

has been re-initialized or repaired

When the Rank message is received by a node, the
receiving node will send its serial number on the bus.
During the ranking procedure, all nodes will also
listen on the bus a specific amount of time and
compare the all serial numbers received with that of
its own. When that time period expires, the node will
decide whether it is a primary, secondary, tertiary,
etc. node based on the relative value of its serial
number relative to the serial numbers of all
remaining nodes in the FTU (other than the Primary
node). Nodes with lowest serial number is declared
secondary, the next lowest is tertiary, etc.

Serial Message
The Serial message is used during the ranking
procedure and is sent immediately after a Rank
message is received. As the name implies, the Serial
message contains the serial number of the sending
node.

Identify Message
The identify message is used whenever there is a
perceived inconsistency on what nodes are primary,
secondary, tertiary, etc. For example, a primary node
receiving a message with the same ID as that just
sent in the current cycle will conclude that there is
another primary node and will issue the identify
message to resolve the inconsistency.

4. REPLICATED MESSAGES ON MULTIPLE
CAN BUSES

To deal with communication failures, every node in
the system listens on all replicated CAN buses, and
will also send messages over all replicated CAN
buses. This creates a problem due to the need to
replicate messages on each bus. To illustrate the
problem consider the situation in Fig. 4 involving
two sensors, two controllers, and two buses. When a
controller node receives a message; it will receive
two versions of the same message denoted m1(k) and
m2(k) each on a separate bus corresponding to the kth

cycle. The controller will perform its control
functions and generates messages C(m1(k)) and
C(m2(k)). The controller then will proceed to send
these two messages on each CAN bus thus
generating a total of four messages C1(m1(k)),
C2(m1(k)), C1(m2(k)), and C2(m2(k)) where Ci(mj(k))
stands for controller message on the ith bus
corresponding to message mj(k). This mechanism
creates redundant traffic, and a potential cause for
congestion. In order to alleviate the problem, the
protocol has a message discarding mechanism. Since
all messages are sent in duplicate, once on each bus,
when a message is received by the controller, the
message with the same message ID is ignored on the
other CAN bus within the same cycle. For example,

if a message is received on CAN bus 1 with message
ID 0x00001000, the node will ignore the next
message with ID 0x00001000 on CAN bus 2.
Effectively, this mechanism will eliminate the
problems posed by the replicated messages created
by sending messages on two CAN buses.

Sequence Numbers
The message discarding protocol is implemented
using sequence numbers. Each message contains a
sequence number that is sent as the first data byte.
This number is used to encode the order in which the
producer node put the same message on the various
buses.  The consumer will only keep the first
message received with the same message ID; the
other messages with the same ID on the other buses
will be ignored.  This guarantees that no old data will
be passed along to another node group.  Sequence
numbers also increase the likelihood of ignoring any
errant message that may show up.  Sequence
numbers add to the robustness of the protocol.

CAN Message ID
CAN Message IDs are used to identify the sender of
the message as well as the type of message being
sent. The bit assignments for message identification
is shown in Fig. 5.

Intra-group Message
Messages for nodes within the same FTU are referred
to as intra-group messages.  For example, all hand
wheels nodes (primary and backups) send messages
to each other during arbitration. These messages are
considered intra-group messages since the intended
targets are also hand wheels.
Inter-group Message:
Messages for nodes in different FTU’s are referred to
as inter-group messages. For example, the hand
wheel FTU will send a wheel position message to the
controller FTU. Since the message is being sent from
one type of node to another, it is an inter-group
message.

5. IMPLEMENTATION, TESTING, AND
VERIFICATION

We have implemented the proposed fault
management algorithm in CANoe using CAN2.0A
(11 bit) for the steer-by-wire application described in
section I. We have extensively tested and verified the
protocol behaviour as well as the steer-by-wire
behaviour. Since CANoe is also a simulator, we
simulated the detailed operation of the hand-wheel as
well as road wheels. We tested failures in the
simulation by simply turning off the corresponding
node (using a simulated switch in CANoe). Because
the entire system was simulated using CANoe, we
could not extensively test failures of the CAN bus
(unless the entire bus was disconnected). The
CAN2.0A implementation was our first and we are
now in the process of simulating the protocol  on
CANoe using CAN2.0B (29 bit) and implementing
an actual steer-by-wire system on a golf cart using
Motorola S12 microcontrollers as target ECU’s and



Microchip MPC 250XX devices as sensor and
actuator nodes.

Failure Modes
Failure modes can be dealt with at the architectural
level, at the protocol level, and at the application
level. In this paper we only deal with failure modes
at the protocol level. In the following, we describe
the behaviour of the protocol under single-point and
multiple-point failures.

Single-Point Failure
We tested that the system recovered from the
following single point failures and verified their
fault-silent behaviour.
• One of the Hand Wheel node fails.
• One of the Road Wheel node fails.
• One of the ECU controllers fails.
• One of the CAN buses fails.

Multiple-Point Failure
Any combination of the above single-point failures
(taken two at a time) was tested and verified their
fault-silent behaviour.
We identified and detected several multiple point
failures and dealt with them in an appropriate
manner. For each of the multiple-point failures listed
below, we straightened the road wheels and applied
the brakes.
• Both of the Hand Wheel nodes fail.
• Both of the Road Wheel nodes fail.
• Both of the ECU controllers fail.
• Both of the CAN buses fail.

6. SUMMARY AND CONCLUSIONS

This paper has presented a CAN-based application
level error detection and management protocol for
safety-critical applications. The time-triggered
paradigm is important for safety-critical applications.
From the viewpoint of the OSI reference model,
there are two main approaches for incorporating the
time-triggered paradigm in safety-critical
applications: bottom-up (i.e., starting at layers 1 and
2 and moving to higher layers) or top-down (i.e.,
starting at the application layer and moving to lower
layers). Most approaches use the former, this paper
describe one example of the latter. In addition,
application level protocols add additional degrees of
freedom for the design of ultra-dependable systems
by taking into account the nature of actual
applications. For our protocol, we have chosen a
steer-by-wire system as our target application. The
protocol has been simulated and implemented in
CANoe and initial test and evaluation results are very
encouraging.
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