
Chapter 6

Combinational-Circuit 

Building Blocks

• Commonly used combinational building    
blocks in design of large circuits:

– Multiplexers

– Decoders

– Encoders

– Comparators

– Arithmetic circuits
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Multiplexers

• A multiplexer (mux) has a number of data inputs, one or more select 

inputs, and one output.

• It selects and passes the signal value on one of the data inputs to 

the output.
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Figure 6.1.   A 2-to-1 multiplexer.
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Multiplexers
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Figure 6.2.   A 4-to-1 multiplexer.
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Multiplexers
• Larger muxes could be constructed using smaller ones.
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Figure 6.3.   Using three 2-to-1 multiplexers to 

build a 4-to-1 multiplexer.
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Figure 6.4.   A 16-to-1 multiplexer using five 

4-to-1 muxes
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Multiplexers
• Refer to Fig 6.5 and 6.6 for practical application of muxes in implementation 

of crossbars and programmable switches in FPGAs.

• General-purpose chips exist that contain muxes as their logic resources. 

Actel Corp and QuickLogic Corp offer FPGAs in which the logic block 

comprises muxes. TI offers gate array chips with mux based logic blocks.

• Muxes can also be used in a more general way to synthesize logic functions.
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Figure 6.7.   Synthesis of an XOR gate 

using a mux
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(a) Original and modified truth tables
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Figure 6.8.   Implementation of the three-input majority function 

using a 4-to-1 multiplexer.
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(a) Truth table
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2-to-1 multiplexers.
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Figure 6.10.   Three-input XOR function implemented with 

a 4-to-1 multiplexer.
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Shannon’s Expansion for synthesis 

using muxes
• Allows functions to be synthesized using combination of muxes and 

other logic gates.

• Shannon’s Expansion theorem allows any Boolean function f to be 

written in the form:

Example: Shannon expansion of the majority function in terms of w1

f(w1, w2, w3) = w1w2 + w1w3 + w2w3 = w1(w2w3) + w1(w2+w3)

f(w1, w2, . . . , wn) = w1• f(0, w2, . . . , wn) + w1 • f(1, w2, . . . , wn)
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Figure 6.11.   The three-input majority function implemented 

using a 2-to-1 multiplexer.
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Shannon’s Expansion for synthesis 

using muxes
• Shannon Expansion can be done 

in terms of more than one 

variable.

• If it is done on two variables the 

resulting expression could be 

implemented using a 4-to-1 mux.

• Note that if Shannon Expansion is 

done in terms of all n variables, 

then the result is the canonical 

SOP of the function.
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Decoders

• Decoders are used to decode encoded information.

• A binary decoder has n inputs and 2n outputs. Only one of the output 

lines is asserted at a time, and each output corresponds to one 

valuation of the inputs.

• A decoder also typically has an enable input, En, that is used to 

enable or disable the output.

• If En is deasserted (En = 0) none of the decoder outputs is asserted.

• If En is asserted (En = 1) the valuation wn-1wn-2…w1w0 determines 

which of the output is asserted.

• An n-bit binary code in which exactly one of the bits is set to 1 at a 

time is called one-hot encoded. 

• The outputs of a binary decoder are one-hot encoded.

• A decoder can be designed to have active-high or active-low

outputs.
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Figure 6.15.   An n-to-2n binary decoder.
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Figure 6.17.   A 3-to-8 decoder using two 

2-to-4 decoders.

Figure 6.18.   A 4-to-16 decoder built using 

a decoder tree.

Decoders
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Decoders

• Building a multiplexer using a decoder
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Decoders
• One of the most important applications of decoders is for address decoding.

• The location of each row of memory cells is identified by its address.

• The first row has address 0 and the last row has address 2m-1, where m is the number of input 

signals used for addressing.

• Information stored in a row of memory cells can be accessed by asserting the corresponding 

select lines.

• A decoder with m inputs and 2m outputs is used to generate the select signals.
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Demultiplexers
• A demultiplexer (demux) circuit performs the opposite of a mux, i.e. 

switching the value of a single data input onto one of multiple data 

output lines.

• An n-to-2n decoder can be used as a 1-to-2n demux. 

• However, in practice decoder circuits are used more often as 

decoders than as demuxes.
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Example: a 2-to-4 decoder can be used 

as a 1-to-4 data demultiplexer. 

In this case the En input serves as the 

data input for the demux, and the y0 to y3
outputs are the data outputs.

The valuation of w1w0 determines which 

of the outputs is set to the value of En.



Chapter 6-17

Encoders

• An encoder performs the opposite function of a decoder. Often it is 

used to encode a given information into a more compact form.

• A binary encoder encodes data from 2n inputs into an n-bit code. 

Exactly one of the input lines should have a value of 1, i.e. the input 

should be one-hot encoded data. The outputs present the binary 

number that identifies which input is 1.

• In binary encoders, all input patterns that have multiple 1s are not 

legal input code and hence are treated as don’t-care conditions.

• Encoders are used to reduce the number of bits needed to represent 

given information, for example:

– Helps reduce number of wires in a transmission link

– Helps reduce number of bits in data storage
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Encoders
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Figure 6.23.   A 4-to-2 binary encoder.

Figure 6.22.   A 2n-to-n binary encoder.
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Priority Encoders
• In a priority encoder each input has a priority level associated with it.

• The encoder output indicates the active input that has the highest 

priority.

• When an input with a high priority is asserted, the other inputs with 

lower priority are ignored.

Example: In the 4-to-2 priority encoder truth table (Fig 6.24) we assume 

w0 has the lowest priority and w3 has the highest priority.

The outputs y1 and y0 represent the binary number that identifies the 

highest priority input set to 1.

Since it is possible that all of the inputs could be left de-asserted (i.e. 

equal to 0), an output z is provided to indicate this condition.

z is set to 1 when at least one of the inputs is equal to 1. It is set to 0 

when all inputs are equal to 0.

When z = 0, the outputs y1 and y0 are meaningless (don’t cares).
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Priority Encoders
• A logical circuit that implements the truth table can 

be synthesized by using the techniques studied 
earlier.

• A more convenient way is to define a set of 
intermediate signals, i0, …, i3, such that each 
signal ik is equal to 1 only if the input with the 
same index, wk, represents the highest-priority 
input that is set to 1.

• Thus, 

• Using the intermediate signals, the circuit for the 
priority encoder will have the same structure as 
the binary encoder in Fig 6.23 with 

y0 = i1 + i3
y1 = i2 + i3

and z = i0 + i1 + i2 + i3
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BCD-to-7-segment code converter
• Converts binary-coded-decimal (BCD) code into signals suitable for 

driving seven-segment displays.

• For each valuation of inputs w3, …, w0, the seven outputs are set to 

display the appropriate BCD digit. (see below)

• Note that the last 6 rows of the truth table are left as don’t cares as 

they don’t correspond to legal BCD codes.
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Figure 6.25.   A BCD-to-7-segment display code converter.
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Arithmetic Comparison Circuits

• A comparator compares the relative sizes of two numbers.

• Consider a comparator that has two n-bit inputs, A and B, which 

represent unsigned binary numbers. It produces three outputs:

� AeqB which is set to 1 if A = B

� AgtB which is set to 1 if A > B

� AltB which is set to 1 if A < B

• The desired comparator can be designed by creating a truth table that 

specifies the three outputs as a function of A and B.

• However, even for moderate values of n, the truth table is large.

• Alternatively, Let n = 4, A = a3a2a1a0 and B = b3b2b1b0
• Define intermediate signals i3, i2, i1,,and i0. Each signal ik is 1 if the bits of 

A and B with the same index are equal, i.e. 

• Thus, the comparator outputs are given by:

AeqB = i3i2i1i0

AgtB = a3b3 + i3a2b2 + i3i2a1b1 + i3i2i1a0b0

AtlB = AeqB + AgtB

kkk bai ⊕=
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Figure 6.26.   A four-bit comparator circuit.
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Full Adder
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Ripple-Carry Adder
• Cascade n full-adders using the carry signals to implement an n-bit 

adder.

• The carry bit propagates from lower to higher significant adder units.

• Each adder introduces a time delay, say ∆t, before its si and ci+1
outputs are valid. 

• The delay for the complete sum and carry out to be available is n∆t.

• The circuit is called ripple-carry adder because of the way the carry 

signals “ripple” through the full adder stages.
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Figure 5.6.   An n-bit ripple-carry adder.
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n-bit Adder Application Example
• Build a circuit that multiplies an eight-bit unsigned number by 3. 

• Let, A = a7a6…a1a0 denote the number and P = p0p1…p1p0 denote the 

product P = 3A. Note that 10 bits are needed to represent the product.
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Figure 5.7.   Circuit that multiplies an eight-bit unsigned number by 3.
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Adder/Subtractor Unit
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Figure 5.13.   Adder/subtractor unit.

If we assume that the n-bit adder is a ripple-carry adder, what is the worst 

case propagation delay?

The delay for cout signal in a full adder is 2 gate delays.

For n-bit full adder the total delay is thus n∆t = 2n gate delays.

If we assume the delay contribution by the XOR gates at the inputs to be 

about one gate delay, the total worst case delay would be 2n+1 gate delays
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Carry-Lookahead Adder
• To reduce the delay caused by the effect of carry propagation 

through the ripple-carry adder, for each stage we can attempt to 
evaluate on the spot whether the carry-in from the previous stage 
will have a value of 1 or 0.

• So this scheme will avoid the waiting of carries to ripple through the 
cascade network as it is the case in the ripple-carry adder.

• The carry-out function for stage i can be realized as:

ci+1 = xiyi + xici + yici
ci+1 = xiyi + (xi + yi)ci
ci+1 = gi + pici

where generate (gi) and propagate (pi) functions are defined as:

gi = xiyi
pi = xi + yi

• Thus, gi is 1 when both xi and yi are equal, regardless of the value of 
the incoming carry ci to this stage.

• The effect of pi is, if it is equal to 1 then a carry-in of ci = 1 will be 
propagated through stage i.
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Carry-Lookahead Adder
• Expanding ci+1 in terms of ci-1 gives:

ci+1 = gi + pici = gi + pi(gi-1 + pi-1ci-1)

= gi + pigi-1 + pipi-1ci-1

• If we continue the expansion until we end with stage 0, we obtain:

ci+1 = gi + pigi-1 + pipi-1gi-2 + . . . + pipi-1…p2p1g0 + pipi-1…p2p1g0 c0

This expansion represents a 2-level AND-OR realization in which ci+1 is 

evaluated very quickly. The adder based on this expansion is called carry-

lookahead adder.

• The speed of a circuit is limited by the longest delay along the paths through 

the circuit, often referred to as the critical-path delay, and the path that 

causes this delay is called the critical path.

• The slow speed of ripple-carry adder is due to the long path along which a 

carry must propagate (see Fig 5.15). The critical path is from x0 and y0 to c2. 

It passes through 5 gates as highlighted in blue. Thus, for an n-bit ripple-

carry adder the total delay along the critical path is 2n+1.

• For the carry-lookahead adder (see Fig 5.16), the critical path for producing 

c2 is the same as that for c1, it is just 3 gate delays. Extending to n bits, the 

final carry-out cn would also be produced after 3 gate delays.
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Carry-Lookahead Adder
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Carry-Lookahead Adder
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Figure 5.19.   An alternative design for a carry-lookahead adder.
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A hierarchical adder design
• The complexity of an n-bit carry-lookahead adder increases rapidly with n. 

To reduce the complexity, a hierarchical design is common.

• For example, we can build a 32-bit adder by dividing it into four 8-bit adder 

blocks each of which are implemented as 8-bit carry-lookahead adder.

• The carry-out signals from the four blocks are c8, c16, c24, and c32.

• We have two possibilities to connect the four adder blocks:

1. Connect the 4 blocks as 4 stages in ripple-carry adder (Fig. 5.17)

2. Connect using second level carry-lookahead circuits (relies on group level 

generate and propagate Pj and Gj produced by each block) (Fig. 5.18)

Block

x31 24–

c32 c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–

c8

x7 0– y7 0–

s7 0–

c03
Block
1

Block
0

Figure 5.17.   A hierarchical carry-lookahead adder with ripple-carry between blocks.
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A hierarchical adder design
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BCD Addition
• Care has to be taken when adding two BCD digits since the sum 

may become invalid (i.e. exceed 9).

• Let X = x3x2x1x0 and Y = y3y2y1y0 represent two BCD digits and let   
S = s3s2s1s0 be the desired sum digit, S = X + Y.

• If X + Y ≤ 9, then the addition is just like addition of two 4-bit 
unsigned numbers.

• But, if X + Y > 9, then the result requires two BCD digits, moreover 
the 4-bit sum obtained from the 4-bit adder may be incorrect. Thus 
in this case a correction needs to be applied to the result.

• The necessary correction arises from the fact that 4-bit binary 
addition is a modulo-16 scheme, whereas decimal addition is a 
modulo-10 scheme.

• Therefore, a correct decimal digit can be generated by adding 6 to 
the result of the 4-bit addition whenever it exceeds 9.

Z = X + Y

If Z ≤ 9, then S = Z and carry-out = 0

if Z > 9, then S = Z + 6 and carry-out = 1
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BCD Addition
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Figure 5.36.   Block diagram for a 

one-digit BCD adder.
Figure 5.38.   Circuit for a one-digit BCD adder.

Chapter 6-36

Design Using CAD Tools
• Schematic capture tools provide a library of graphical symbols that 

represent basic logic gates. These gates are used to create 

schematics of relatively simple circuits.

• Most tools also provide a library of commonly used circuits or 

modules, such as adders. Each module can be imported into a 

schematic as part of a larger circuit.

• In some CAD systems such modules are called macrofunctions or 

megafunctions.

• Two main types of macrofunctions:

1. Technology-dependent macrofunction – designed for specific type of chip

2. Technology-independent macrofunction – can be implemented in any type of 

chip. 

• Library of Parameterized Modules (LPM) is included as part of the 

Quartus II CAD system. 

– Each module in the library is technology independent

– Each module is parameterized, i.e. it can be used in a variety of ways that can be 

configured by using the CAD tools.
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Design Using CAD Tools
• Example: The library includes an n-bit adder/subtractor module, named 

lpm_add_sub.

– Important parameters: 

• LPM_WIDTH : specifies the number of bits, n, in the adder

• LPM_REPRESENTATION : specifies whether to use signed or unsigned integers. 

This affects only the way the module determines overflow.

Figure 5.20.   Schematic using an LPM adder/subtractor module, with   

LPM_WIDTH = 16, and signed representation

Chapter 6-38

Design Using CAD Tools

Figure 5.21.   Simulation results for the LPM adder.
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n-bit adder in VHDL

• Hierarchical design of an n-bit ripple-carry adder using n instances

of full-adders.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY fulladd IS

PORT (   Cin, x, y : IN STD_LOGIC ;

s, Cout : OUT STD_LOGIC ) ;

END fulladd ;

ARCHITECTURE LogicFunc OF fulladd IS

BEGIN

s <= x XOR y XOR Cin ;

Cout <= (x AND y) OR (Cin AND x) OR (Cin AND y) ;

END LogicFunc ;

Figure 5.22.   VHDL code for the full-adder.
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LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY adder4 IS

PORT (   Cin : IN STD LOGIC ;

x3, x2, x1, x0 : IN STD_LOGIC ;

y3, y2, y1, y0 : IN STD_LOGIC ;

s3, s2, s1, s0 : OUT STD_OGIC ;

Cout : OUT STD_LOGIC ) ;

END adder4 ;

ARCHITECTURE Structure OF adder4 IS

SIGNAL c1, c2, c3 : STD_LOGIC ;

COMPONENT fulladd

PORT ( Cin, x, y : IN STD_LOGIC ;

s, Cout : OUT STD_LOGIC ) ;

END COMPONENT ;

BEGIN

stage0: fulladd PORT MAP ( Cin, x0, y0, s0, c1 ) ;

stage1: fulladd PORT MAP ( c1, x1, y1, s1, c2 ) ;

stage2: fulladd PORT MAP ( c2, x2, y2, s2, c3 ) ;

stage3: fulladd PORT MAP (

Cin => c3, Cout => Cout, x => x3, y => y3, s => s3 ) ;

END Structure ;

n-bit adder in VHDL

Figure 5.23.  VHDL code for a four-bit adder.
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VHDL package
• Package – allows VHDL constructs to be defined in one source file 

and then be used in other source code files. 

• Data type declarations and component declarations are example 

constructs that are often placed in a package.

• The package declaration can be stored in a separate file or in the 

same source code with designs that use the package.

• Example in the fulladd_package below the fulladd component is 

declared.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

PACKAGE fulladd_package IS

COMPONENT fulladd

PORT ( Cin, x, y : IN STD_LOGIC ;

s, Cout : OUT STD_LOGIC ) ;

END COMPONENT ;

END fulladd_package ;

Figure 5.24. Declaration of a package.
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LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE work.fulladd_package.all ;

ENTITY adder4 IS

PORT ( Cin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

S : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ;

Cout : OUT STD_LOGIC ) ;

END adder4 ;

ARCHITECTURE Structure OF adder4 IS

SIGNAL C : STD_LOGIC_VECTOR(1 TO 3) ;

BEGIN

stage0: fulladd PORT MAP ( Cin, X(0), Y(0), S(0), C(1) ) ;

stage1: fulladd PORT MAP ( C(1), X(1), Y(1), S(1), C(2) ) ;

stage2: fulladd PORT MAP ( C(2), X(2), Y(2), S(2), C(3) ) ;

stage3: fulladd PORT MAP ( C(3), X(3), Y(3), S(3), Cout ) ;

END Structure ;

Using packages

X, Y, S defined as

multi-bit signals

Figure 5.26.  A four-bit adder defined using multibit signals.
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Using the + operator
• VHDL provides arithmetic, logical and other operators. 

• Since std_logic_1164 package does not specify that STD_LOGIC 

signals can be used with arithmetic operators, the package named

std_logic_signed with STD_LOGIC_VECTOR signals or 

std_logic_arith with SIGNED signals could be used.

• When the code is compiled it generates an adder circuit to 

implement the + operator. When using the Quartus II CAD system, 

the adder used by the compiler is actually lpm_add_sub module.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_signed.all ;

ENTITY adder16 IS

PORT ( X, Y : IN  STD_LOGIC_VECTOR(15 DOWNTO 0) ;

S       : OUT  STD_LOGIC_VECTOR(15 DOWNTO 0) ) ;

END adder16 ;

ARCHITECTURE Behavior OF adder16 IS    

BEGIN

S <= X + Y ;

END Behavior ;

Figure 5.27.  VHDL code for a 16-bit adder.

Chapter 6-44

Adder with carry and overflow

Figure 5.28.  The 16-bit adder from Figure 5.27 with carry and overflow signals.
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Adder with carry and overflow
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_arith.all ;

ENTITY adder16 IS

PORT ( Cin : IN STD_LOGIC ;

X, Y : IN SIGNED(15 DOWNTO 0) ;

S : OUT SIGNED(15 DOWNTO 0) ;

Cout, Overflow : OUT STD_LOGIC ) ;

END adder16 ;

ARCHITECTURE Behavior OF adder16 IS    

SIGNAL Sum : SIGNED(16 DOWNTO 0) ;

BEGIN

Sum <= ('0' & X) + Y + Cin ;

S <= Sum(15 DOWNTO 0) ;

Cout <= Sum(16) ;

Overflow <= Sum(16) XOR X(15) XOR Y(15) XOR Sum(15) ;

END Behavior ;

Figure 5.29. Use of the arithmetic package.
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One-digit BCD Adder
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_unsigned.all ;

ENTITY BCD IS

PORT ( X, Y : IN  STD_LOGIC_VECTOR(3 DOWNTO 0) ;

S : OUT STD_LOGIC_VECTOR(4 DOWNTO 0) ) ;

END BCD ;

ARCHITECTURE Behavior OF BCD IS

SIGNAL Z : STD_LOGIC_VECTOR(4 DOWNTO 0) ;

SIGNAL Adjust : STD_LOGIC ;

BEGIN

Z <= ('0' & X) + Y ;

Adjust <= '1' WHEN Z > 9 ELSE '0' ;

S <= Z WHEN (Adjust = '0') ELSE Z + 6 ;

END Behavior ;

Figure 5.37.   VHDL code for a one-digit BCD adder.
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Comparator design using subtractor

The following circuit shows how the Z, N, and V signals can be used

to determine the comparator outputs: X = Y, X < Y, X ≤ Y, X > Y, X ≥ Y

Figure 5.42.   A comparator circuit.
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Comparator design using subtractor
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE work.fulladd_package.all ;

ENTITY comparator IS

PORT ( X, Y : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

V, N, Z : OUT STD_LOGIC ) ;

END comparator ;

ARCHITECTURE Structure OF comparator IS

SIGNAL S : STD_LOGIC_VECTOR(3 DOWNTO 0) ;

SIGNAL C : STD_LOGIC_VECTOR(1 TO 4) ;

BEGIN

stage0: fulladd PORT MAP ( '1', X(0), NOT Y(0), S(0), C(1) ) ;

stage1: fulladd PORT MAP ( C(1), X(1), NOT Y(1), S(1), C(2) ) ;

stage2: fulladd PORT MAP ( C(2), X(2), NOT Y(2), S(2), C(3) ) ;

stage3: fulladd PORT MAP ( C(3), X(3), NOT Y(3), S(3), C(4) ) ;

V <= C(4) XOR C(3) ;

N <= S(3) ;

Z <= '1' WHEN S(3 DOWNTO 0) = "0000" ELSE '0';

END Structure ;

Figure 5.43.   Structural VHDL code for the comparator circuit.



Chapter 6-49

Comparator design using subtractor

Figure 5.44.   Behavioral VHDL code for the comparator circuit.

Chapter 6-50

Selected Signal Assignment
• Selected signal assignment - allows a signal to be assigned one of 

several values, based on a selection criteria. It begins with the 

construct ‘WITH s SLECT’ where s is used for a selection criterion.

• WHEN clause must be included for every possible value of s.

• Keyword OTHERS is a convenient way to account for all logic 

values that are not explicitly listed in a WHEN clause.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY mux2to1 IS

PORT ( w0, w1, s : IN STD_LOGIC ;

f : OUT  STD_LOGIC ) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

WITH s SELECT

f <= w0 WHEN '0',

w1 WHEN OTHERS ;

END Behavior ;

Figure 6.27.   VHDL code for a A 2-to-1 multiplexer.
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4-to-1 MUX in VHDL
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY mux4to1 IS

PORT (w0, w1, w2, w3 : IN  STD_LOGIC ;

s                       : IN  STD_LOGIC_VECTOR(1 DOWNTO 0);

f                        : OUT  STD_LOGIC ) ;

END mux4to1 ;

ARCHITECTURE Behavior OF mux4to1 IS

BEGIN

WITH s SELECT

f   <= w0 WHEN "00",

w1 WHEN "01",

w2 WHEN "10",

w3 WHEN OTHERS ;

END Behavior ;

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

PACKAGE mux4to1_package IS

COMPONENT mux4to1

PORT (w0, w1, w2, w3   : IN  STD_LOGIC ;

s : IN  STD_LOGIC_VECTOR(1 DOWNTO 0) ;

f : OUT  STD_LOGIC ) ;

END COMPONENT ;

END mux4to1_package ;

Figure 6.28.   VHDL code for a 4-to-1 multiplexer (Part a).

Figure 6.28.   VHDL code for a 4-to-1 multiplexer (Part b).
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Hierarchical 16-to-1 MUX
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

LIBRARY work ;

USE work.mux4to1_package.all ;

ENTITY mux16to1 IS

PORT (w : IN STD_LOGIC_VECTOR(0 TO 15) ;

s  : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

f  : OUT STD_LOGIC ) ;

END mux16to1 ;

ARCHITECTURE Structure OF mux16to1 IS

SIGNAL m : STD_LOGIC_VECTOR(0 TO 3) ;

BEGIN

Mux1: mux4to1 PORT MAP ( w(0), w(1), w(2), w(3), s(1 DOWNTO 0), m(0) ) ;

Mux2: mux4to1 PORT MAP ( w(4), w(5), w(6), w(7), s(1 DOWNTO 0), m(1) ) ;

Mux3: mux4to1 PORT MAP ( w(8), w(9), w(10), w(11), s(1 DOWNTO 0), m(2) ) ;

Mux4: mux4to1 PORT MAP ( w(12), w(13), w(14), w(15), s(1 DOWNTO 0), m(3) ) ;

Mux5: mux4to1 PORT MAP ( m(0), m(1), m(2), m(3), s(3 DOWNTO 2), f ) ;

END Structure ;
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Figure 6.29.   Hierarchical code for a 16-to-1 multiplexer.
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2-to-4 binary decoder
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY dec2to4 IS

PORT ( w : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;

En : IN STD_LOGIC ;

y : OUT STD_LOGIC_VECTOR(0 TO 3) ) ;

END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS

SIGNAL Enw : STD_LOGIC_VECTOR(2 DOWNTO 0) ;

BEGIN

Enw <= En & w ; -- use VHDL concatenate (&) operator

WITH Enw SELECT

y <= "1000" WHEN "100",

"0100" WHEN "101",

"0010" WHEN "110",

"0001" WHEN "111",

"0000" WHEN OTHERS ; -- i.e for cases when En=0

END Behavior ;

Figure 6.30.   VHDL code for a 2-to-4 binary decoder.
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Conditional Signal Assignment
• Similar to the selected signal assignment, a conditional signal 

assignment allows a signal to be set to one of several values.

• WHEN … ELSE clause is used for conditional signal assignment.

• The priority level associated with each WHEN clause in the 

conditional signal assignment is a key difference from the selected 

signal assignment, which has no such priority.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY mux2to1 IS

PORT (w0, w1, s  : IN STD_LOGIC ;

f               : OUT  STD_LOGIC ) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

f <= w0 WHEN s = '0' ELSE w1 ;

END Behavior ;

Figure 6.31.   A 2-to-1 multiplexer using a conditional signal assignment.
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4-to-2 priority encoder
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LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY priority IS

PORT ( w : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

y : OUT  STD_LOGIC_VECTOR(1 DOWNTO 0) ;

z : OUT  STD_LOGIC ) ;

END priority ;

ARCHITECTURE Behavior OF priority IS

BEGIN

y <= "11" WHEN w(3) = '1' ELSE 

"10" WHEN w(2) = '1' ELSE

"01" WHEN w(1) = '1' ELSE

"00" ;

z <= '0' WHEN w = "0000" ELSE '1' ;

END Behavior ;

Figure 6.32.   VHDL code for a priority encoder.
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LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY priority IS

PORT ( w : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;

z : OUT STD_LOGIC ) ;

END priority ;

ARCHITECTURE Behavior OF priority IS

BEGIN

WITH w SELECT

y <= "00" WHEN "0001",

"01" WHEN "0010",

"01" WHEN "0011",

"10" WHEN "0100",

"10" WHEN "0101",

"10" WHEN "0110",

"10" WHEN "0111",

"11" WHEN OTHERS ;

WITH w SELECT

z <= '0' WHEN "0000",

'1' WHEN OTHERS ;

END Behavior ;

Figure 6.33.   Less efficient code for a priority encoder.
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Comparator using relational operator
• Use the package named std_logic_unsigned to allow the use of 

relational operators on UNSIGNED binary numbers.

• Alternately, we can use the package named std_logic_arith for 

both UNSIGNED and SIGNED data types.

• The VHDL compiler instantiates a predefined module to implement 

each of the comparison operations.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_unsigned.all ;

ENTITY compare IS

PORT (A, B : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

AeqB, AgtB, AltB : OUT STD_LOGIC ) ;

END compare ;

ARCHITECTURE Behavior OF compare IS

BEGIN

AeqB <= '1' WHEN A = B ELSE '0' ;

AgtB <= '1' WHEN A > B ELSE '0' ;

AltB <= '1' WHEN A < B ELSE '0' ;

END Behavior ;

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_arith.all ;

ENTITY compare IS

PORT (A, B  : IN SIGNED(3 DOWNTO 0) ;

AeqB, AgtB, AltB : OUT  STD_LOGIC ) ;

END compare ;

ARCHITECTURE Behavior OF compare IS

BEGIN

AeqB <= '1' WHEN A = B ELSE '0' ;

AgtB <= '1' WHEN A > B ELSE '0' ;

AltB <= '1' WHEN A < B ELSE '0' ;

END Behavior ;

Figure 6.34.   VHDL code for a four-bit 

comparator.

Figure 6.35.   The code from Figure 6.34 for 

signed numbers.
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Generate Statements
• VHDL provides the ‘FOR GENERATE’ and ‘IF GENERATE’ 

statements for describing regularly structured hierarchical code.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE work.mux4to1_package.all ;

ENTITY mux16to1 IS

PORT ( w : IN STD_LOGIC_VECTOR(0 TO 15) ;

s : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

f : OUT STD_LOGIC ) ;

END mux16to1 ;

ARCHITECTURE Structure OF mux16to1 IS

SIGNAL m : STD_LOGIC_VECTOR(0 TO 3) ;

BEGIN

G1: FOR i IN 0 TO 3 GENERATE

Muxes: mux4to1 PORT MAP (

w(4*i), w(4*i+1), w(4*i+2), w(4*i+3), s(1 DOWNTO 0), m(i) ) ;

END GENERATE ;

Mux5: mux4to1 PORT MAP ( m(0), m(1), m(2), m(3), s(3 DOWNTO 2), f ) ;

END Structure ;

Figure 6.36.   Code for a 16-to-1 multiplexer using a generate statement.



Chapter 6-59

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY dec4to16 IS

PORT ( w : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

En : IN STD_LOGIC ;

y : OUT STD_LOGIC_VECTOR(0 TO 15) ) ;

END dec4to16 ;

ARCHITECTURE Structure OF dec4to16 IS

COMPONENT dec2to4

PORT ( w : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;

En : IN STD_LOGIC ;

y : OUT STD_LOGIC_VECTOR(0 TO 3) ) ;

END COMPONENT ;

SIGNAL m : STD_LOGIC_VECTOR(0 TO 3) ;

BEGIN

G1: FOR i IN 0 TO 3 GENERATE

Dec_ri: dec2to4 PORT MAP ( w(1 DOWNTO 0), m(i), y(4*i TO 4*i+3) );

G2: IF i=3 GENERATE

Dec_left: dec2to4 PORT MAP ( w(i DOWNTO i-1), En, m ) ;

END GENERATE ;

END GENERATE ;

END Structure ;

Figure 6.37.   Hierarchical code for a 4-to-16 binary decoder (see Fig 6.18 and 6.30)
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Concurrent vs. Sequential 

Assignment Statements
• Concurrent assignment statements – has the property that the order in which they 

appear in VHDL code does not affect the meaning of the code. Examples of such 
statements:
– Simple assignment statements (for logic or arithmetic expressions)

– Selected assignment statements

– Conditional assignment statements

• Sequential assignment statements – the ordering of the statements may affect the 
meaning of the code. Examples:
– IF … THEN … ELSE statement

– CASE statement

• VHDL requires that sequential assignment statements be placed inside process
statement, that begins with the PROCESS keyword followed by a parenthesized list 
of signals, called sensitivity list.
– For a combinational circuit the sensitivity list includes all input signals that are used inside the 

process.

– When there is a change in the value of any signal in the process’s sensitivity list the process 
becomes active. Once active the statements inside the process are evaluated in sequential 
order.

– Any assignment made to signals inside the process are not visible outside the process until 
all of statements in the process have been evaluated.

– If there are multiple assignments to the same signal, only the last one has any visible effect.

– While statements in a process are sequential, the process statement itself is a concurrent 
statement.

– A process statement is translated by the VHDL compiler into logic equations.
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2-to-1 MUX using if…then…else
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY mux2to1 IS

PORT ( w0, w1, s : IN STD_LOGIC ;

f : OUT STD_LOGIC ) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

PROCESS ( w0, w1, s )

BEGIN

IF s = '0' THEN

f <= w0 ;

ELSE

f <= w1 ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 6.38.   A 2-to-1 multiplexer specified using an if-then-else statement
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LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY mux2to1 IS

PORT ( w0, w1, s : IN STD_LOGIC ;

f : OUT STD_LOGIC ) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

PROCESS ( w0, w1, s )

BEGIN

f <= w0 ; -- assign default value for f

IF s = '1' THEN

f <= w1 ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 6.39.   Alternative code for a 2-to-1 multiplexer using an if-then-else statement.

Actual assignment for f

is scheduled to occur 

after all of the assignments

in the process have been 

evaluated.
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Priority encoder using if…then…else
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY priority IS

PORT (w  : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

y  : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;

z  : OUT STD_LOGIC ) ;

END priority ;

ARCHITECTURE Behavior OF priority IS

BEGIN

PROCESS ( w )

BEGIN

IF w(3) = '1' THEN

y <= "11" ;

ELSIF w(2) = '1' THEN 

y <= "10" ;

ELSIF w(1) = '1' THEN

y <= "01" ;

ELSE

y <= "00" ;

END IF ;

END PROCESS ;

z <= '0' WHEN w = "0000" ELSE '1' ;  

END Behavior ;

Figure 6.40.   A priority encoder specified using the if-then-else statement.

VHDL syntax does not allow

conditional assignment

statement or selected 

assignment statement to

appear inside a process.

Chapter 6-64

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY priority IS

PORT ( w : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

y : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;

z : OUT STD_LOGIC ) ;

END priority ;

ARCHITECTURE Behavior OF priority IS

BEGIN

PROCESS ( w )

BEGIN

y <= "00" ;

IF w(1) = '1' THEN y <= "01" ; END IF ;

IF w(2) = '1' THEN y <= "10" ; END IF ;

IF w(3) = '1' THEN y <= "11" ; END IF ;

z <= '1' ;

IF w = "0000" THEN z <= '0' ; END IF ;

END PROCESS ;

END Behavior ;

Figure 6.41.   Alternative code for the priority encoder.
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1-bit equality comparator
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY compare1 IS

PORT (A, B  : IN STD_LOGIC ;

AeqB : OUT  STD_LOGIC ) ;

END compare1 ;

ARCHITECTURE Behavior OF compare1 IS

BEGIN

PROCESS ( A, B )

BEGIN

AeqB <= '0' ;

IF A = B THEN

AeqB <= '1' ;

END IF ;

END PROCESS ;

END Behavior ;

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY implied IS

PORT (A, B  : IN  STD_LOGIC ;

AeqB : OUT  STD_LOGIC ) ;

END implied ;

ARCHITECTURE Behavior OF implied IS

BEGIN

PROCESS ( A, B )

BEGIN

-- AeqB <= '0' ; --taken out

IF A = B THEN

AeqB <= '1' ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 6.42.   Code for a one-bit equality comparator. Figure 6.43.   An example of code that results in implied memory.

A 
B AeqB

Figure 6.44.   The circuit generated from the code in Figure 6.43.

VHDL semantics stipulate that in cases

where the code does not specify the value

of a signal, the signal should retain its 

current value

Chapter 6-66

CASE Statement
• The case statement is similar to a selected signal assignment in that it has a 

selection signal and includes WHEN clauses for various valuations of this selection 

signal.

• The case statement must include a WHEN clause for all possible valuations of the 

selection signal.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY mux2to1 IS

PORT (w0, w1, s : IN STD_LOGIC ;

f : OUT STD_LOGIC ) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

PROCESS ( w0, w1, s )

BEGIN

CASE s IS

WHEN '0' =>

f <= w0 ;

WHEN OTHERS =>

f <= w1 ;

END CASE ;

END PROCESS ;

END Behavior ;

Figure 6.45.   A case statement that represents a 2-to-1 multiplexer.
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Process for 2-to-4 binary decoder
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY dec2to4 IS

PORT ( w : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;

En : IN STD_LOGIC ;

y : OUT STD_LOGIC_VECTOR(0 TO 3) ) ;

END dec2to4 ;

ARCHITECTURE Behavior OF dec2to4 IS

BEGIN

PROCESS ( w, En )

BEGIN

IF En = '1' THEN

CASE w IS

WHEN "00" => y <= "1000" ;

WHEN "01" => y <= "0100" ;

WHEN "10" => y <= "0010" ;

WHEN OTHERS => y <= "0001" ;

END CASE ;

ELSE

y <= "0000" ;

END IF ;

END PROCESS ;

END Behavior ;

Figure 6.46.   A process statement that describes a 2-to-4 binary decoder.

Chapter 6-68

BCD-to7-segment decoder
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY seg7 IS

PORT (bcd :  IN  STD_LOGIC_VECTOR(3 DOWNTO 0) ;

leds : OUT  STD_LOGIC_VECTOR(1 TO 7) ) ;

END seg7 ;

ARCHITECTURE Behavior OF seg7 IS

BEGIN

PROCESS ( bcd )

BEGIN

CASE bcd IS -- abcdefg

WHEN "0000" => leds <= "1111110" ;

WHEN "0001" => leds <= "0110000" ;

WHEN "0010" => leds <= "1101101" ;

WHEN "0011" => leds <= "1111001" ;

WHEN "0100" => leds <= "0110011" ;

WHEN "0101" => leds <= "1011011" ;

WHEN "0110" => leds <= "1011111" ;

WHEN "0111" => leds <= "1110000" ;

WHEN "1000" => leds <= "1111111" ;

WHEN "1001" => leds <= "1110011" ;

WHEN OTHERS => leds <= "-------" ;

END CASE ;

END PROCESS ;

END Behavior ;

Figure 6.47.   Code that represents a BCD-to-7-segment decoder

w 0 

a 

w 1 

b 
c 
d w 2 

w 3 
e 
f 
g 

c e 

a 

g 

b f 

d 

1 

0 

1 

1 

1 

1 

1 

w 0 a 

1 

b 

0 1 

1 

1 

1 

0 

1 

1 

0 

1 

0 

0 

w 1 

0 

1 

1 

0 

0 

w 2 

0 

0 

0 

0 

1 

w 3 

0 

0 

0 

0 

0 

c 

1 

0 

1 

0 

0 

1 

1 

0 

1 

1 

1 

0 

0 

0 

0 

1 

1 0 0 1 

1 

1 

1 

1 

0 

1 

1 

0 

1 1 

1 

1 

1 

1 

1 

0 

1 

1 

1 

d 

0 

1 

0 

0 

1 

0 

e 

1 

0 

1 

1 

1 

0 

1 

0 

0 

1 

0 

0 

0 

1 

f 

1 

0 

0 

1 

1 

1 

g 

1 

0 

1 

1 

1 

1 

1 

1 

0 

1 

Figure 6.25.   A BCD-to-7-segment 

display code converter.
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Arithmetic Logic Unit (ALU)
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_unsigned.all ;

ENTITY alu IS

PORT ( s : IN STD_LOGIC_VECTOR(2 DOWNTO 0) ;

A, B : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

F : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) ) ;

END alu ;

ARCHITECTURE Behavior OF alu IS

BEGIN

PROCESS ( s, A, B )

BEGIN

CASE s IS

WHEN "000" =>

F <= "0000" ;

WHEN "001" =>

F <= B - A ;

WHEN "010" =>

F <= A - B ;

WHEN "011" =>

F <= A + B ;

WHEN "100" =>

F <= A XOR B ;

WHEN "101" =>

F <= A OR B ;

WHEN "110" =>

F <= A AND B ;

WHEN OTHERS =>

F <= "1111" ;

END CASE ;

END PROCESS ;

END Behavior ;

Figure 6.48.   Code that represents the 

functionality of the 74381 ALU chip.

Chapter 6-70

VHDL Operators (used for synthesis)


